164 resultados para INDUCTION PERIOD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P <0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P <0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P <0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether neuropeptide Y (NPY)-related mechanisms become activated with progression of cardiac hypertrophy in vivo, protein mass and de novo protein synthesis (incorporation of [(14)C]Phe, 0.1 muCi ml(-1)) were assessed in cardiomyocytes, obtained from spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto rats (8, 12, 16, 20, and 24 weeks of age), and cultured for 24 h. NPY (10(-8) M) increased protein mass of cardiomyocytes from 16-week-old SHRs by 9.2 +/- 2.1% (n = 8, P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial variation of chromospheric oscillations in network bright points (NBPs) is studied using high-resolution observations in Ca II K3. Light curves and hence power spectra were created by isolating distinct regions of the NBP via a simple intensity thresholding technique. Using this technique, it was possible to identify peaks in the power spectra with particular spatial positions within the NBPs. In particular, long-period waves with periods of 4-15 minutes (1-4 mHz) were found in the central portions of each NBP, indicating that these waves are certainly not acoustic but possibly due to magnetoacoustic or magnetogravity wave modes. We also show that spatially averaged or low spatial resolution power spectra can lead to an inability to detect such long-period waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer cells are insensitive to many signals that inhibit growth of untransformed cells. Here, we show that primary human epithelial cells expressing human papillomavirus (HPV) type-16 E6/E7 bypass arrest caused by the DNA-damaging drug adriamycin and become tetraploid. To determine the contribution of E6 in the context of E7 to the resistance of arrest and induction of tetraploidy, we used an E6 mutant unable to degrade p53 or RNAi targeting p53 for knockdown. The E6 mutant fails to generate tetraploidy; however, the presence of E7 is sufficient to bypass arrest while the p53 RNAi permits both arrest insensitivity and tetraploidy. We published previously that polo-like kinase 1 (Plk1) is upregulated in E6/E7-expressing cells. We observe here that abnormal expression of Plk1 protein correlates with tetraploidy. Using the p53 binding-defective mutant of E6 and p53 RNAi, we show that p53 represses Plk1, suggesting that loss of p53 results in tetraploidy through upregulation of Plk1. Consistent with this hypothesis, overexpression of Plk1 in cells generates tetraploidy but does not confer resistance to arrest. These results support a model for transformation caused by HPV-16 where bypass of arrest and tetraploidy are separable consequences of p53 loss with Plk1 required only for the latter effect.