22 resultados para IMMISCIBLE POLYMER BLENDS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a simple technique for the fabrication of polymer nanotubes with a monodisperse size distribution and uniform orientation. When either a polymer melt or solution is placed on a substrate with high surface energy, it will spread to form a thin film, known as a precursor film, similar to the behavior of low molar mass liquids. Similar wetting phenomena occur if porous templates are brought into contact with polymer solutions or melts: A thin surface film will cover the pore walls in the initial stages of wetting. This is because the cohesive driving forces for complete filling are much weaker than the adhesive forces. Wall wetting and complete filling of the pores thus take place on different time scales. The latter is prevented by thermal quenching in the case of melts or by solvent evaporation in the case of solutions, thus preserving a nanotube structure. If the template is of monodisperse size distribution, aligned or ordered, so are the nanotubes, and ordered polymer nanotube arrays can be obtained if the template is removed. Any melt-processible polymer, such as polytetrafluoroethylene (PTFE), blends, or multicomponent solutions can be formed into nanotubes with a wall thickness of a few tens of nanometers. Owing to its versatility, this approach should be a promising route toward functionalized polymer nanotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the effects of: the molecular weight ratio of poly(epsilon -caprolactone) (PCL) in blends containing polymer of high (50 000 g mol(-1)) and low (4000 g mol(-1)) molecular weight; the concentration (0, 1, and 5 wt-%) of poly(vinyl pyrrolidone/iodine) (PVP/I); and storage at 30 degreesC and 75% relative humidity; on the thermomechanical properties of films prepared by solvent evaporation from solutions containing both PCL and PVP/I. The tensile properties were found to be statistically dependent on the molecular weight ratio of PCL but not on the concentration of PVP/I. The reductions in tensile strength and elongation at break associated with increasing amounts of low molecular weight PCL were attributed to a reduction in the concentration of chain entanglements. No changes were observed in viscoelastic properties or the glass transition temperature. Following storage there were no changes in the tensile strength, glass transition temperature, or viscoelastic properties of the films; however, significant reductions in elongation at break were observed. It is suggested that this is due to hydrolytic chain scission of amorphous PCL. Inclusion of 5 wt-% PVP/I increased this process in films containing 100:0 and 80:20 high/low molecular weight PCL (but not 60.40), but the extent of this was small. This study highlighted significant aging properties of PCL in a moist atmosphere. Consequently, it is recommended that suitable packaging materials should be employed to control the exposure of PCL films to water during storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liqs. are for the dissoln. of various polymers and/or copolymers, the formation of resins and blends, and the reconstitution of polymer and/or copolymer solns., and the dissoln. and blending of functional additives and/or various polymers and/or copolymers. Thus, ≥1 ionic liq., which is a liq. salt complex that exists in the liq. phase between about -70 to 300°, is mixed with ≥2 differing polymeric materials to form a mixt., and adding a nonsolvent to the mixt. to remove the ionic liq. from the resin or blend. [on SciFinder(R)]