29 resultados para Hydraulic motors
Resumo:
Regional groundwater flow in high mountainous terrain is governed by a multitude of factors such as geology, topography, recharge conditions, structural elements such as fracturation and regional fault zones as well as man-made underground structures. By means of a numerical groundwater flow model, we consider the impact of deep underground tunnels and of an idealized major fault zone on the groundwater flow systems within the fractured Rotondo granite. The position of the free groundwater table as response to the above subsurface structures and, in particular, with regard to the influence of spatial distributed groundwater recharge rates is addressed. The model results show significant unsaturated zones below the mountain ridges in the study area with a thickness of up to several hundred metres. The subsurface galleries are shown to have a strong effect on the head distribution in the model domain, causing locally a reversal of natural head gradients. With respect to the position of the catchment areas to the tunnel and the corresponding type of recharge source for the tunnel inflows (i.e. glaciers or recent precipitation), as well as water table elevation, the influence of spatial distributed recharge rates is compared to uniform recharge rates. Water table elevations below the well exposed high-relief mountain ridges are observed to be more sensitive to changes in groundwater recharge rates and permeability than below ridges with less topographic relief. In the conceptual framework of the numerical simulations, the model fault zone has less influence on the groundwater table position, but more importantly acts as fast flow path for recharge from glaciated areas towards the subsurface galleries. This is in agreement with a previous study, where the imprint of glacial recharge was observed in the environmental isotope composition of groundwater sampled in the subsurface galleries. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Stochastic Analysis of Seepage under Hydraulic Structures Resting on Anisotropic Heterogeneous Soils
Resumo:
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Simulated Annealing Algorithm (SAA). The performance of ESPRIT is tested with simulated stator current signal of an induction motor with BRB. It shows that even with a short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3kW, 380V, 50Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.
Resumo:
The geometry of tree branches can have considerable effect on their efficiency in terms of carbon export per unit carbon investment in structure. The purpose of this study was to evaluate different design criteria using data describing the form of Picea sitchensis branches. Allometric analysis of the data suggests that resources are distributed to favour shoots with the greatest opportunity for extension into new space, with priority to the extension of the leader. The distribution of allometric relations of links (branch elements) was tested against two models: the pipe model, based on hydraulic transport requirements, and a static load model based on the requirement of shoots to provide mechanical resistance to static loads. Static load resistance required the load parameter to be proportional to the link radius raised to the power of 4. This was shown to be true within a 95% statistical confidence limit. The pipe model would require total distal length to be proportional to link radius squared but the measured branches did not conform well to this model. The comparison suggests that the diameters of branch elements were more related to the requirements for mechanical load. The cost of following a hydraulic design principle (the pipe model) in terms of mechanical efficiency was estimated and suggested that the pipe model branch would not be mechanically compromised but would use structural resources inefficiently. Resource allocation among branch elements was found to be consistent with mechanical stability criteria but also indicated the possibility of allocation based on other criteria, such as potential light interception by shoots. The evidence suggests that whilst branch topology increments by reiteration of units of morphogenesis, the geometry follows a functional design pattern.
Resumo:
Seepage flow under hydraulic structures provided with intermediate filters has been investigated. The flow through the banks of the canal has been included in the model. Different combinations of intermediate filter and canal width were studied. Different lengths of the floor, differential heads, and depths of the sheet pile driven beneath the floor were also investigated. The introduction of an intermediate filter to the floor of hydraulic structures reduced the uplift force acting on the downstream floor by up to 72%. The maximum uplift reduction occurred when the ratio of the distance of filter location downstream from the cutoff to the differential head was 1. Introducing a second filter in the downstream side resulted in a further reduction in the exit hydraulic gradient and in the uplift force, which reached 90%. The optimum locations of the two filters occurred when the first filter was placed just downstream of the cutoff wall and the second filter was placed nearly at the middistance between the cutoff and the end toe of the floor. The results showed significant differences between the three-dimensional (3D) and the two-dimensional (2D) analyses.
Resumo:
In this study, some limitations associated with modeling the hydraulic conductivity of soil improved with vertical drains are discussed. In addition, some limitations of conventional methodologies for deducing the hydraulic conductivity from oedometer or Rowe cell tests are investigated. An alternative approach for estimating the hydraulic conductivity in soils improved by vertical drains is discussed. This methodology will allow for simpler finite element modeling of consolidation due to vertical drains. The effectiveness of this technique has been demonstrated using a field study.
Resumo:
The characteristics of hydraulic jumps were investigated for three shapes of artificial apparent corrugated beds in a horizontal rectangular flume. Rectangular, triangular, and circular-shaped tire waste corrugated beds were used. Froude number ranged from 2.75 to 4.25. The experimental observations included water surface profiles, bed shear stress, and the hydraulic jump length. Results showed that the shape of the corrugation had relatively insignificant effects on hydraulic jump properties for small Froude numbers. The rectangular, triangular, and circular-shaped corrugated beds reduced the hydraulic jump length by up to 7, 10, and 11%, respectively. The corrugated bed also reduced the tailwater depth by up to 11.5% compared with the smooth bed. The apparent conditions of corrugated bed reduced the hydraulic jump relative length and height by about 0.4 and 0.5, respectively. The circular-shaped tire waste was found to be more effective in reducing the length and depth of the hydraulic jump.
Resumo:
The rimming ?ow of a power-law ?uid in the inner surface of a horizontal rotating cylinder is investigated. Exploiting the fact that the liquid layer is thin, the simplest lubrication theory is applied. The generalized run-off condition for the steady-state ?ow of the power-law liquid is derived. In the bounds implied by this condition, ?lm thickness admits a continuous solution. In the supercritical case when the mass of non-Newtonian liquid exceeds a certain value or the speed of rotation is less than an indicated limit, a discontinuous solution is possible and a hydraulic jump may occur in the steady-state regime. The location and height of the hydraulic jump for the power-law liquid is determined.