27 resultados para High yield


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a novel method of producing multicomponent fertiliser granules using high shear granulation. The granulation process was optimised using the response surface methodology technique. The variables used in the optimisation process include granulation time, batch size, impeller speed and binder concentration. Granulation time, binder concentration and interaction between the batch size and granulation time were found to be the main factors affecting the granule median size. The product yield is mainly influenced by granulation time and binder concentration. The interaction between the impeller speed and batch size also have a significant influence on the product yield. Product yield (2-4 mm) of approximately 60% could be obtained with high sphericity and granule strength (> 0.5 MPa). A low product recycle ratio of about 2:3 can be obtained at the optimised process conditions, compared to typical recycle rations of 6:1 which are obtained in typical fertiliser plants. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A replicated field plot experiment was carried out in Northern Ireland in 1996 with flax, cv Ariane, and linseed, cv Flanders, each grown at seed rates of 500, 1000 and 1500 seeds/m(2), in which a comparison was made between netting of the standing crop, following desiccation by the trimesium salt of glyphosate (Touchdown, Zeneca Ltd.), and water or dew retting of the pulled crop. Application at 4 litres/ha on 9 August, 33 days after the mid-point of flowering (MPF), achieved both desiccation and partial retting of the crop within 14 days. Over 16 % clean long fibre was extracted by scutching the stand-netted flax straw, yielding 800 kg/ha fibre, while water retting achieved 20 extraction and 980 kg/ha yield and dew netting 8.5 % and 420 kg/ha respectively. The dew retting was uneven, resulting in high losses during fibre extraction, while water retting for 7 days at 25 degreesC did not achieve complete retting resulting in a high content of woody fragments in the fibre. Fibre yields increased by almost 50 % with the high v. low seed rate. Linseed was less well retted than flax and contained higher levels of impurity in the extracted long fibre which, after retting, yielded 120 to 310 kg/ha at extraction rates of 2.9 % to 7.5 %.

In a second experiment in 1998 flax cvs. Viola and Evelyn were treated with the timesium salt of glyphosate at rates of 2, 4 or 6 litres/ha 10, 20, 30 or 40 days after MPF on 5 July. Viola desiccated satisfactorily at all spray dates with 4 and 6 litres/ha glyphosate. The 20-day treatment desiccated more slowly than the 30-day and the 2 litres/ha rate did not achieve complete desiccation, but the trimesium salt of glyphosate achieved better desiccation at this timing than that found in earlier studies with the original form of glyphosate. Evelyn desiccated more slowly and less evenly than Viola particularly at the 20-day and 40-day timings. Spraying at MPF + 10 days interrupted early development of the seed and fibre significantly reducing yields. Due to slower desiccation the 20-day timing was no better than the 30-day, which was well retted by harvest 44 days after spraying, and gave the highest yield of clean long fibre. The spraying 40 days after MPF was considered too late in the season to be of practical use. It was concluded that retting of standing flax following desiccation with the trimesium salt of glyphosate was more effective than with the earlier formulation and that resting of the standing crop could achieve equivalent or better retting with similar fibre yields to traditional retting methods. The optimum spray timing was found to be about 30 days after MPF with 4 or 6 litres/ha, the lower rate being adequate for glyphosate responsive varieties such as Viola.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally, the solid and liquid fractions (digestate) from Anaerobic Digestion (AD) energy production are considered as waste. This has a negative impact on the sustainability of AD processes because of the financial outlay required to treat digestate before being discharged into municipal water treatment plants or natural water bodies. The main aim of this research was to investigate feasibility of producing an organic fertiliser using anaerobic digestate and limestone powders as the raw materials employing a high shear granulation process. Two-level factorial experimental design was used to determine the influence of granulation process variables on, the strength, resistance to attrition and yield of the granules. It was concluded from the study that it is technically feasible to produce organic fertiliser granules of acceptable strength and product yield. Increasing the liquid-to-solid ratio during granulation leads to increased granule strength and better product yield. Although the strength of the granules produced was lower than typical strength of commercial synthetic fertiliser granules (about 5 to 7. MPa), this could be improved by mixing the digestate with a polymeric binder or coating the particles post granulation. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication and performance of the first bit-level systolic correlator array is described. The application of systolic array concepts at the bit level provides a simple and extremely powerful method for implementing high-performance digital processing functions. The resulting structure is highly regular, facilitating yield enhancement through fault-tolerant redundancy techniques and therefore ideally suited to implementation as a VLSI chip. The CMOS/SOS chip operates at 35 MHz, is fully cascadable and exhibits 64-stage correlation for 1-bit reference and 4-bit data. 7 refs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impeller speed is one of the most crucial process variables that affect the properties of the granules produced in a high-shear granulator. Several reports can be found in literature that discuss the influence of impeller speed on the granules size. For instance some researchers like Knight report an increase of granule size with impeller speed [1] and [2], while others (Scheaefer et al. and Ramaker et al.) observed a decrease of granules size with increasing impeller speed [3] and [4]. However there is limited work reported in literature on the effect of the impeller speed on the mechanical properties of granules. Mechanical properties are important as they affect the performance of the granules on the other downstream process such as transportation and handling. The work reported here serves to address the missing in knowledge gap regarding the influence of impeller speed on mechanical properties granules. How the granulation system responds to the changes in the impeller speeds depends on binder that is used in the process. For this reason the two extreme cases, of a low viscosity binder system and high viscosity binder system are considered in this research. For low viscosity binder system it was observed that the granule size decreased with increasing impeller speed whilst for the high viscosity binder system the opposite was observed by Knight [1]. The granule strength, the Young's modulus and yield strength of the high viscosity granules increased with increasing impeller speed where as the opposite trends were observed for the low viscosity binder granules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work comprises the photoactivity assessment of transparent sol–gel TiO2 coatings of various thickness using two test systems. The initial rates of both photocatalytic reactions, namely the oxidative bleaching of Acid Orange 7 (AO7) and the reductive bleaching of 2,6-dichlorindophenol (DCIP) increase linearly with increasing titania film thickness as well as with increasing absorbed light flux. The latter work revealed quantum yields (QY) of 0.19% and 92% for the AO7 and DCIP test system, respectively. The low QY for the AO7 oxidation is due to the combination of a slow irreversible reduction of oxygen and also for the oxidation of AO7, thus favouring the high efficiency for electron–hole recombination that is typical for aqueous organic pollutants. In contrast, the very high QY for the photocatalysed reduction of DCIP is due to the presence of a vast excess of glycerol which traps the photogenerated holes efficiently and so allow time for the slower reduction of dye to take place. Furthermore, the oxidation of glycerol results in the generation of highly reducing R-hydroxyalkyl radicals that are able to also reduce DCIP. As a consequence of this ‘current doubling’ effect, the observed QY (92%) is much higher than the apparent theoretical value of 50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental results on relativistic surface HHG at a repetition rate of 10 Hz are presented. Average powers in the 10?W range are generated in the spectral range of 51 to 26 nm (24-48 eV). The surface harmonic radiation is produced by focusing the second-harmonic of a high-power laser onto a rotating glass surface to moderately relativistic intensities of 3×10 19Wcm ?2. The harmonic emission exhibits a divergence of 26 mrad. Together with absolute photon numbers recorded by a calibrated spectrometer, this allows for the determination of the extreme ultraviolet (XUV) yield. The pulse energies of individual harmonics are reaching up to the μJ level, equivalent to an efficiency of 10 ?5. The capability of producing stable and intense high-harmonic radiation from relativistic surface plasmas may facilitate experiments on nonlinear ionization or the seeding of free-electron lasers. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The current study reports original vapour-liquid equilibrium (VLE) for the system {CO2 (1) + 1-chloropropane (2)}. The measurements have been performed over the entire pressure-composition range for the (303.15, 313.15 and 328.15) K isotherms. The values obtained have been used for comparison of four predictive approaches, namely the equation of state (EoS) of Peng and Robinson (PR), the Soave modification of Benedict–Webb–Rubin (SBWR) EoS, the Critical Point-based Revised Perturbed-Chain Association Fluid Theory (CP-PC-SAFT) EoS, and the Conductor-like Screening Model for Real Solvents (COSMO-RS). It has been demonstrated that the three EoS under consideration yield similar and qualitatively accurate predictions of VLE, which is not the case for the COSMO-RS model examined. Although CP-PC-SAFT EoS exhibits only minor superiority in comparison with PR and SBWR EoS in predicting VLE in the system under consideration, its relative complexity can be justified when taking into account the entire thermodynamic phase space and, in particular, considering the liquid densities and sound velocities over a wider pressure-volume-temperature range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current variation aware design methodologies, tuned for worst-case scenarios, are becoming increasingly pessimistic from the perspective of power and performance. A good example of such pessimism is setting the refresh rate of DRAMs according to the worst-case access statistics, thereby resulting in very frequent refresh cycles, which are responsible for the majority of the standby power consumption of these memories. However, such a high refresh rate may not be required, either due to extremely low probability of the actual occurrence of such a worst-case, or due to the inherent error resilient nature of many applications that can tolerate a certain number of potential failures. In this paper, we exploit and quantify the possibilities that exist in dynamic memory design by shifting to the so-called approximate computing paradigm in order to save power and enhance yield at no cost. The statistical characteristics of the retention time in dynamic memories were revealed by studying a fabricated 2kb CMOS compatible embedded DRAM (eDRAM) memory array based on gain-cells. Measurements show that up to 73% of the retention power can be saved by altering the refresh time and setting it such that a small number of failures is allowed. We show that these savings can be further increased by utilizing known circuit techniques, such as body biasing, which can help, not only in extending, but also in preferably shaping the retention time distribution. Our approach is one of the first attempts to access the data integrity and energy tradeoffs achieved in eDRAMs for utilizing them in error resilient applications and can prove helpful in the anticipated shift to approximate computing.