129 resultados para Heterogeneity of the evolutionary process
Resumo:
Objective: The primary objective of this study was to examine how the comprehensive nature of the Stress Process Model could elucidate on the stressors associated with caring for a palliative cancer patient. Method: A qualitative research strategy involving home-based face-to-face interviews with 12 bereaved family caregivers was used to examine the caregiving experience. Results: The primary stressors associated with caring for the palliative cancer care patients stemmed from care recipient symptoms and personal care needs. The absence of adequate support from the formal health care delivery system was a consistent message from all participants. There was evidence of financial stress primarily associated with the purchase of private home care to supplement formal care. In contrast, the resources that family caregivers relied on to moderate the stressful effects of caregiving included extended family, friends, and neighbors. While the stress of direct caregiving was high, the study revealed that formal care was also a significant source of stress for family caregivers. Conclusion: It was concluded that an appropriately financed, integrated system of care that followed a person-centered philosophy of care would best meet the needs of the patient and his or her family. © The Author(s) 2010.
Resumo:
This paper presents a novel approach based on the use of evolutionary agents for epipolar geometry estimation. In contrast to conventional nonlinear optimization methods, the proposed technique employs each agent to denote a minimal subset to compute the fundamental matrix, and considers the data set of correspondences as a 1D cellular environment, in which the agents inhabit and evolve. The agents execute some evolutionary behavior, and evolve autonomously in a vast solution space to reach the optimal (or near optima) result. Then three different techniques are proposed in order to improve the searching ability and computational efficiency of the original agents. Subset template enables agents to collaborate more efficiently with each other, and inherit accurate information from the whole agent set. Competitive evolutionary agent (CEA) and finite multiple evolutionary agent (FMEA) apply a better evolutionary strategy or decision rule, and focus on different aspects of the evolutionary process. Experimental results with both synthetic data and real images show that the proposed agent-based approaches perform better than other typical methods in terms of accuracy and speed, and are more robust to noise and outliers.
Resumo:
An extensive experimental program has been carried out on a 135?mm tip diameter radial turbine using a variety of stator designs, in order to facilitate direct performance comparisons of varying stator vane solidity and the effect of varying the vaneless space. A baseline vaned stator was designed using commercial blade design software, having 15 vanes and a vane trailing edge to rotor leading edge radius ratio (Rte/rle) of 1.13. Two additional series of stator vanes were designed and manufactured; one series having varying vane numbers of 12, 18, 24, and 30, and a further series with Rte/rle ratios of 1.05, 1.175, 1.20, and 1.25. As part of the design process a series of CFD simulations were carried out in order to guide design iterations towards achieving a matched flow capacity for each stator. In this way the variations in the measured stage efficiency could be attributed to the stator passages only, thus allowing direct comparisons to be made. Interstage measurements were taken to capture the static pressure distribution at the rotor inlet and these measurements were then used to validate subsequent numerical models. The overall losses for different stators have been quantified and the variations in the measured and computed efficiency were used to recommend optimum values of vane solidity and Rte/rle.
Resumo:
We present results from complementary characterizations of the primary relaxation rate of a room temperature ionic liquid (RTIL), 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(6)mim][Tf2N], over a wide temperature range. This extensive data set is successfully merged with existing literature data for conductivity, viscosity, and NMR diffusion coefficients thus providing, for the case of RTILs, a unique description of the primary process relaxation map over more than 12 decades in relaxation rate and between 185 and 430 K. This unique data set allows a detailed characterization of the VTF parameters for the primary process, that are: B = 890 K, T-0 = 155.2 K, leading to a fragility index m = 71, corresponding to an intermediate fragility. For the first time neutron spin echo data from a fully deuteriated sample of RTIL at the two main interference peaks, Q = 0.76 and 1.4 angstrom(-1) are presented. At high temperature (T > 250 K), the collective structural relaxation rate follows the viscosity behavior; however at lower temperatures it deviates from the viscosity behavior, indicating the existence of a faster process.
Resumo:
In this investigation Raman spectroscopy was shown to be a method that could be used to monitor the polymerisation of PMMA bone cement. Presently there is no objective method that orthopaedic surgeons can use to quantify the curing process of cement during surgery. Raman spectroscopy is a non-invasive, non-destructive technique that could offer such an option. Two commercially available bone cements (Palacos® R and SmartSet® HV) and different storage conditions (4 and 22°C) were used to validate the technique. Raman spectroscopy was found to be repeatable across all conditions with the completion of the polymerisation process particularly easy to establish. All tests were benchmarked against current temperature monitoring methods outlined in ISO and ASTM standards. There was found to be close agreement with the standard methods and the Raman spectroscopy used in this study.
Resumo:
The molecular recognition and attachment of the CD4 molecule and the HIV envelope glycoprotein (gp120) might be described as a consecutive three-step molecular recognition process. 1. (a) Long range interaction: electrostatic pre-orientation, 2. (b) short range interaction: electronic attachment followed by a ‘Locking-in’ (via aromatic ring orientation) and 3. (c) internal interaction (induced fit): conformational readjustment of the protein molecules. On the basis of the preliminary investigations (X-ray structures of CD4 and biological studies of CD4 and gp120 point mutants) we described a computational model. This approach consists of empirical calculations as well as ab initio level of quantum chemistry. The conformational analysis of the wild type and mutant CD4 molecules was supported by molecular mechanics and dynamics (Amber force field). The latter analysis involves the application of a novel method, the Amino Acid Conformation Assignment of Proteins (ACAP) software, developed for the notation of secondary protein structures. According to the cardinal role of the electrostatic factors during this interaction, several ab initio investigations were performed for better understanding of the recognition process on submolecular level. Using the above mentioned computational model, we could interpret the basic behaviours and predict some additional features of CD4-gp120 interaction, in spite of the missing gp120 X-ray structure.
Resumo:
While the causes of autism spectrum disorder (ASD) still are not fully understood, increasingly research focuses on interventions and treatment of children diagnosed with ASD. Considerably less attention is paid to family systems, family functioning, and family needs. This paper takes a family system perspective exploring how families with children on the autism spectrum function during the particularly stressful period of the diagnosis process and thereafter. Recommendations made in this paper include the need for empirical studies that address in detail family systems, family needs, the assessment and diagnostic process, service provision, social support networks, and additional stressful life events. Furthermore, the development of a family functioning assessment tools is called for in order to promote child-family-centred assessment and intervention. Details of an ongoing comparative study are outlined that will make a contribution to family studies and autism research field with a specific focus on the diagnosis
Resumo:
Within the ever-changing arenas of architectural design and education, the core element of architectural education remains: that of the design process. The consideration of how to design in addition to what to design presents architectural educators with that most constant and demanding challenge of how do we best teach the design process?
This challenge is arguably most acute at a student's early stages of their architectural education. In their first years in architecture, students will commonly concentrate on the end product rather than the process. This is, in many ways, understandable. A great deal of time, money and effort go into their final presentations. They believe that it is what is on the wall that is going to be assessed. Armed with new computer skills, they want to produce eye-catching graphics that are often no more than a celebration of a CAD package. In an era of increasing speed, immediacy of information and powerful advertising it is unsurprising that students want to race quickly to presenting an end-product.
Recognising that trend, new teaching methods and models were introduced into the second year undergraduate studio over the past two years at Queen's University Belfast, aimed at promoting student self-reflection and making the design process more relevant to the students. This paper will first generate a critical discussion on the difficulties associated with the design process before outlining some of the methods employed to help promote the following; an understanding of concept, personalisation of the design process for the individual student; adding realism and value to the design process and finally, getting he students to play to their strengths in illustrating their design process like an element of product. Frameworks, examples, outcomes and student feedback will all be presented to help illustrate the effectiveness of the new strategies employed in making the design process firstly, more relevant and therefore secondly, of greater value, to the architecture student.
Resumo:
One of the enduring illusions about Northern Ireland is that its society can be conceptualized through a binary distinction between protestant and catholic. unionist and nationalist. It is increasingly apparent that these broad domains are themselves fractured and diverse and that otherness is often conceived from within rather than without. Northern Ireland can also be viewed as a laboratory for identity formation as unionists and loyalists strive to reconcile themselves with the fundamental political changes that have followed in the wake of the Peace Process. This paper considers one aspect of the contestation of belonging that increasingly characterizes unionism. It examines the competition for the ownership of the mythology of the Battle of the Somme ( 1916), long a key event in the unionist narrative. In particular, the paper addresses the ways in which paramilitary organizations are using the Somme to legitimate their own activities but also to distance the loyalist working classes from the former hegemonic Britishness of official unionism and the sectarianism of the Orange Order. The analysis concludes that loyalist identity is being conceptualized thorough a narrative of betrayal from within and at an intensely localized scale.
Resumo:
The cure of polydicyclopentadiene conducted by ring-opening metathesis polymerisation in the presence of a Grubbs catalyst was studied using non-invasive Raman spectroscopy. The spectra of the monomer precursor and polymerised product were fully characterised and all stages of polymerisation monitored. Because of the monomer's high reactivity, the cure process is adaptable to reaction injection moulding and reactive rotational moulding. The viscosity of the dicyclopentadiene undergoes a rapid change at the beginning of the polymerisation process and it is critical that the induction time of the viscosity increase is determined and controlled for successful manufacturing. The results from this work show non-invasive Raman spectroscopic monitoring to be an effective method for monitoring the degree of cure, paving the way for possible implementation of the technique as a method of real-time analysis for control and optimisation during reactive processing. Agreement is shown between Raman measurements and ultrasonic time of flight data acquired during the initial induction period of the curing process. (c) 2004 Elsevier B.V. All rights reserved.