74 resultados para Heat fluid flow
Resumo:
Systematic experiments have been carried out on the thermal and rheological behaviour of the ionic liquid, 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], and, for the first time, on the forced convective heat transfer of an ionic liquid under the laminar flow conditions. The results show that the thermal conductivity of the ionic liquid is similar to 0.13 W m(-1) K-1, which is almost independent of temperature between 25 and 40 degrees C. Rheological measurements show that the [C(4)mim][NTf2] liquid is a Newtonian fluid with its shear viscosity decreasing with increasing temperature according to the exponential law over a temperature range of 20-90 degrees C. The convective heat transfer experiments demonstrate that the thermal entrance length of the ionic liquid is very large due to its high viscosity and low thermal conductivity. The convective heat transfer coefficient is observed to be much lower than that of distilled water under the same conditions. The convective heat transfer data are also found to fit well to the convectional Shah's equation under the conditions of this work. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Unsteady coherent structures and turbulent heat transfer in a film cooling flow is studied by using detached eddy simulation (DES). Detailed computations for an inclined jet in crossflow by a single row of 35 degree round holes on a flat plate were performed at blowing ratios of 0.5 and 1.0, and a density ratio of 2.0. The correlation between the coherent vortical structures and the unsteady heat transfer is carefully examined. The instantaneous flow fields and heat transfer distributions are found to be characterized by the formation of large coherent vortical structures. These structures enhance the thermal mixing process and turbulent heat transfer to the wall. From the inspection of both unsteady adiabatic film cooling effectiveness and heat transfer coefficient, these two are found to have substantial local fluctuations due to the large unsteadiness of coherent structures. The fluctuation of the adiabatic effectiveness and heat transfer coefficient, for example, can be as high as 15 and 50 percent of the time-mean value, respectively. It could result in the detrimental effect on film cooling performance.
Resumo:
Rimming flow on the inner surface of a horizontal rotating cylinder is investigated. Using a scale analysis, a theoretical description is obtained for steady-state non-Newtonian flow. Simple lubrication theory is applied since the Reynolds number is small and the liquid film is thin. Since the Deborah number is very small the flow is viscometric. The shear-thinning number, which characterizes the shear-thinning effect, may be small or large. A general constitutive law for this kind of flow requires only a single function relating shear stress and shear rate that corresponds to a generalized Newtonian liquid. For this case the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a continuous steady-state solution is proved. The rheological models, which show Newtonian behavior at low shear rates with transition to power-law shear thinning at moderate shear rates, are considered. Numerical results are carried out for the Carreau and Ellis models, which exhibit Newtonian behavior near the free surface and power-law behavior near the wall of the rotating cylinder.
Resumo:
Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90° elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s -1. The elbow bend pressure drop was best correlated in terms of le/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data.
Resumo:
A detailed theoretical analysis has been carried out to study efficient heating due to microwaves for one-dimensional (1D) oil–water emulsion samples placed on various ceramic, metallic (reflective) and ceramic–metallic composite supports. Two typical emulsion systems are considered such as oil-in-water (o/w) and water-in-oil (w/o). A preliminary study has been carried out via average power vs emulsion thickness diagram to estimate microwave power absorption within emulsion samples for various cases. The maxima in average power, also termed as ‘resonances’, are observed for specific emulsion thicknesses and the two consecutive resonances of significant magnitudes are termed as R1 and R2 modes. For both o/w and w/o emulsions, it is observed that microwave power absorption is enhanced in presence of metallic and composite supports during both R1 and R2 modes. The efficient heating strategies characterized by ‘large heating rates’ with ‘minimal thermal runaway’ i.e. uniform temperature distributions within the sample have been assessed for each type of emulsion. Based on the detailed spatial distributions of power and temperature for various cases, SiC-metallic composite support may be recommended as an optimal heating strategy for o/w samples with higher oil fractions (0.45) whereas metallic and Alumina-metallic composite supports may be favored for samples with smaller oil fractions (=0.3) during R1 mode. For w/o samples, SiC-metallic composite support may be suitable heating strategy for all ranges of water fractions during R1 mode. During R2 mode, metallic and Alumina-metallic composite supports are favored for both o/w and w/o emulsion samples. Current study recommends the efficient way to use microwaves in a single mode waveguide and the heating strategy can be suitably extended for heating of any other emulsions for which dielectric properties are easily measurable or available in the literature.
Resumo:
To enhance the uniformity of fluid flow distribution in microreactors, a header configuration consisting of a cone diffuser connected to a thick-walled screen has been proposed. The thick-walled screen consists of two sections: the upstream section constitutes a set of elongated parallel upstream channels and the downstream section constitutes a set of elongated parallel downstream channels positioned at an angle of 90 with respect to the upstream channels. In this approach the problem of flow, equalization reduces to that of flow equalization in the first and second downstream channels of the thick-walled screen. In turn, this requires flow equalization in the corresponding cross sections of the upstream channels. The computational fluid dynamics analysis of the fluid flow maldistribution shows that eight parallel upstream channels with a width of 300-600 pm are required per 1 cm of length for flow equalization. The length to width ratio of these channels has to be > 15. The numerical results suggest that the proposed header-configuration can effectively improve the performance of the downstream microstructured devices, decreasing the ratio of the maximum flow velocity to the mean flow velocity from 2 to 1.005 for a wide range of Reynolds numbers (0.5-10). 2006 American Institute of Chemical Engineers AlChE J, 53: 28-38, 2007.
Resumo:
Concrete solar collectors offer a type of solar collector with structural, aesthetic and economic advantages over current populartechnologies. This study examines the influential parameters of concrete solar collectors. In addition to the external conditions,the performance of a concrete solar collector is influenced by the thermal properties of the concrete matrix, piping network andfluid. Geometric and fluid flow parameters also influence the performance of the concrete solar collector. A literature review ofconcrete solar collectors is conducted in order to define the benchmark parameters from which individual parameters are thencompared. The numerical model consists of a 1D pipe flow network coupled with the heat transfer in a 3D concrete domain. Thispaper is concerned with the physical parameters that define the concrete solar collector, thus a constant surface temperature isused as the exposed surface boundary condition with all other surfaces being insulated. Results show that, of the parametersinvestigated, the pipe spacing, ps, concrete conductivity, kc, and the pipe embedment depth, demb, are among those parameterswhich have greatest effect on the collector’s performance. The optimum balance between these parameters is presented withrespect to the thermal performance and discussed with reference to practical development issues.
Resumo:
Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.