18 resultados para Harpy eagle
Resumo:
Background: Real-time quantitative PCR (qPCR) is a highly sensitive and specific method which is used extensively for determining gene expression profiles in a variety of cell and tissue types. In order to obtain accurate and reliable gene expression quantification, qPCR data are generally normalised against so-called reference or housekeeping genes. Ideally, reference genes should have abundant and stable RNA transcriptomes under the experimental conditions employed. However, reference genes are often selected rather arbitrarily and indeed some have been shown to have variable expression in a variety of in vitro experimental conditions.
Objective: The objective of the current study was to investigate reference gene expression in human periodontal ligament (PDL) cells in response to treatment with lipopolysaccharide (LPS).
Method: Primary human PDL cells were grown in Dulbecco’s Modified Eagle Medium with L-glutamine supplemented with 10% fetal bovine serum, 100UI/ml penicillin and 100µg/ml streptomycin. RNA was isolated using the RNeasy Mini Kit (Qiagen) and reverse transcribed using the QuantiTect Reverse Transcription Kit (Qiagen). The expression of a total of 19 reference genes was studied in the presence and absence of LPS treatment using the Roche Reference Gene Panel. Data were analysed using NormFinder and Bestkeeper validation programs.
Results: Treatment of human PDL cells with LPS resulted in changes in expression of several commonly used reference genes, including GAPDH. On the other hand the reference genes β-actin, G6PDH and 18S were identified as stable genes following LPS treatment.
Conclusion: Many of the reference genes studied were robust to LPS treatment (up to 100 ng/ml). However several commonly employed reference genes, including GAPDH varied with LPS treatment, suggesting they would not be ideal candidates for normalisation in qPCR gene expression studies.
Resumo:
Background: The oral cavity is a frontline barrier which is often exposed to physical trauma and noxious substances, leading to pro-inflammatory responses designed to be protective in nature. The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel activation in gingival and periodontal inflammation is currently limited. Gingival fibroblasts are the most abundant structural cell in periodontal tissues and we hypothesised that they may have a role in the inflammatory response associated with TRP channel activation. Objectives: The present study was designed to determine whether the TRPV1 agonist capsaicin could elicit a pro-inflammatory response in gingival fibroblasts in vitro by up-regulation of interleukin-8 (IL-8) production. Methods: Gingival fibroblasts were derived by explant culture from surgical tissues following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Following treatment of gingival fibroblasts with capsaicin, IL-8 levels were measured by ELISA. The potential cytotoxicity of capsaicin was determined by the MTT assay. Results: In gingival fibroblasts treated with the TRPV1 agonist capsaicin (10µM), IL-8 production was significantly increased compared with untreated control cells. Capsaicin was shown not to be toxic to gingival fibroblasts at the concentrations studied. Conclusion: The identification of factors that modulate pro-inflammatory cytokine production is important for our understanding of gingival and periodontal inflammation. This study reports for the first time that gingival fibroblasts respond to the TRPV1 agonist capsaicin by increased production of IL-8. Activation of TRPV1 on gingival fibroblasts could therefore have an important role in initiating and sustaining the inflammatory response associated with periodontal diseases
Resumo:
Background: Periodontal ligament (PDL) cells are exposed to physical forces in vivo in response to mastication, parafunction, speech and orthodontic tooth movement. Although it has been shown that PDL cells perceive and respond directly to mechanical stimulation, the nature of the ion channels that mediate this mechanotransduction remain to be fully elucidated. The transient receptor potential (TRP) superfamily of ion channels is believed to play a critical role in sensory physiology, where they act as transducers for thermal, chemical and mechanical stimuli. Recent studies have shown that members of the vanilloid (TRPV) and ankyrin (TRPA) subfamilies encode mechanosensitive TRPs. The vanilloid family member TRPV4 is one such non selective calcium permeable cationic channel which has been shown to be activated by chemical ligands, hypotonicity, and mechanical stimuli. Objectives: The objective of the current study was to investigate functional expression of TRPV4 in cultured human PDL cells. Methods: Human PDL cells were grown in Dulbecco's Modified Eagle Medium with L-glutamine supplemented with 10% fetal bovine serum (FBS), 100UI/ml penicillin and 100μg/ml streptomycin. Cells in passage 4-6 were used in all experiments. TRPV4 functional expression was determined using ratiometric calcium imaging. Cultured cells were loaded with intracellular Ca2+ probe fura-2 and cells were then stimulated with the TRPV4 agonists, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), GSK1016790A or hypotonic solution. The TRPV4 antagonist RN 1734 was used to block the corresponding agonist responses. Results: PDL fibroblasts responded to application of TRPV4 agonists and hypotonic stimuli by an increase in intracellular calcium which was attenuated in the presence of the TRPV4 antagonist. Conclusions: We have shown for the first time the functional expression of the mechanosensitive TRPV4 channel in human PDL cells. The molecular identity and mechanisms of activation of mechanosensitive TRP channels in PDL cells merit further investigation.