27 resultados para Habitat (Ecology) Queensland Bribie Island Statistical methods
Resumo:
Aims/hypothesis: Diabetic nephropathy is a major diabetic complication, and diabetes is the leading cause of end-stage renal disease (ESRD). Family studies suggest a hereditary component for diabetic nephropathy. However, only a few genes have been associated with diabetic nephropathy or ESRD in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. Methods: We exploited a novel algorithm, ‘Bag of Naive Bayes’, whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate association tests. The analysis was performed on a genome-wide association study of 3,464 patients with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study and subsequently replicated with 4,263 type 1 diabetes patients from the Steno Diabetes Centre, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK collection (UK–Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US). Results: Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the FinnDiane study. An association between ESRD and rs17709344, tagging the previously identified rs12437854 and located between the RGMA and MCTP2 genes, was replicated in independent case–control cohorts. rs12917114 near SEMA6D was associated with ESRD in the replication cohorts under the genotypic model (p < 0.05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno. Conclusions/interpretation: This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods to detect novel genetic variants in diabetic nephropathy and, in general, in complex diseases.
Resumo:
In recent years, the issue of life expectancy has become of upmost importance to pension providers, insurance companies and the government bodies in the developed world. Significant and consistent improvements in mortality rates and, hence, life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data in order to anticipate future life expectancy and, hence, quantify the costs of providing for future aging populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age and cohort, and forecast these trends into the future using standard statistical methods. The modeling approaches used failed to capture the effects of any structural change in the trend and, thus, potentially produced incorrect forecasts of future mortality rates. In this paper, we look at a range of leading stochastic models of mortality and test for structural breaks in the trend time series.
Resumo:
Heterotrophic prokaryotic communities that inhabit saltern crystallizer ponds are typically dominated by two species, the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber, regardless of location. These organisms behave as ‘microbial weeds’ as defined by Cray et al. (Microb Biotechnol 6: 453–492, 2013) that possess the biological traits required to dominate the microbiology of these open habitats. Here, we discuss the enigma of the less abundant Haloferax mediterranei, an archaeon that grows faster than any other, comparable extreme halophile. It has a wide window for salt tolerance, can grow on simple as well as on complex substrates and degrade polymeric substances, has different modes of anaerobic growth, can accumulate storage polymers, produces gas vesicles, and excretes halocins capable of killing other Archaea. Therefore, Hfx. mediterranei is apparently more qualified as a ‘microbial weed’ than Haloquadratum and Salinibacter. However, the former differs because it produces carotenoid pigments only in the lower salinity range and lacks energy-generating retinal-based, light-driven ion pumps such as bacteriorhodopsin and halorhodopsin. We discuss these observations in relation to microbial weed biology in, and the open-habitat ecology of, hypersaline systems.
Resumo:
In semiconductor fabrication processes, effective management of maintenance operations is fundamental to decrease costs associated with failures and downtime. Predictive Maintenance (PdM) approaches, based on statistical methods and historical data, are becoming popular for their predictive capabilities and low (potentially zero) added costs. We present here a PdM module based on Support Vector Machines for prediction of integral type faults, that is, the kind of failures that happen due to machine usage and stress of equipment parts. The proposed module may also be employed as a health factor indicator. The module has been applied to a frequent maintenance problem in semiconductor manufacturing industry, namely the breaking of the filament in the ion-source of ion-implantation tools. The PdM has been tested on a real production dataset. © 2013 IEEE.
Resumo:
In recent years, the issue of life expectancy has become of utmost importance to pension providers, insurance companies, and government bodies in the developed world. Significant and consistent improvements in mortality rates and hence life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data to anticipate future life expectancy and hence quantify the costs of providing for future aging populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age, and cohort and forecast these trends into the future by using standard statistical methods. These approaches rely on the assumption that structural breaks in the trend do not exist or do not have a significant impact on the mortality forecasts. Recent literature has started to question this assumption. In this paper, we carry out a comprehensive investigation of the presence or of structural breaks in a selection of leading mortality models. We find that structural breaks are present in the majority of cases. In particular, we find that allowing for structural break, where present, improves the forecast result significantly.
Resumo:
The River Bush must reach a standard of good ecological potential (GEP) by 2015 due to the requirements of the water framework directive. The role of sediments within a water body is extremely important to all aspects of a river's regime. The aim of this research is to investigate the effects of Altnahinch Dam on sediment distribution in the River Bush (a heavily modified water body) with comparison made against the Glendun River (an unmodified water body). Samples collected from the rivers were analysed by physical (pebble count, sieve analysis) and statistical methods (ANOVA, GRADISTAT). An increase in fine sediments upstream of the dam provides evidence that the dam is impacting sediment distribution. Downstream effects are not shown to be significant. The output of this study also implies similar impacts at other drinking water storage impoundments. This research recommends that a sediment management plan be put in place for Altnahinch Dam and that further studies be carried-out concentrating on fine sediment distribution upstream of the dam.
Resumo:
Background: High risk medications are commonly prescribed to older US patients. Currently, less is known about high risk medication prescribing in other Western Countries, including the UK. We measured trends and correlates of high risk medication prescribing in a subset of the older UK population (community/institutionalized) to inform harm minimization efforts. Methods: Three cross-sectional samples from primary care electronic clinical records (UK Clinical Practice Research Datalink, CPRD) in fiscal years 2003/04, 2007/08 and 2011/12 were taken. This yielded a sample of 13,900 people aged 65 years or over from 504 UK general practices. High risk medications were defined by 2012 Beers Criteria adapted for the UK. Using descriptive statistical methods and regression modelling, prevalence of ‘any’ (drugs prescribed at least once per year) and ‘long-term’ (drugs prescribed all quarters of year) high risk medication prescribing and correlates were determined. Results: While polypharmacy rates have risen sharply, high risk medication prevalence has remained stable across a decade. A third of older (65+) people are exposed to high risk medications, but only half of the total prevalence was long-term (any = 38.4 % [95 % CI: 36.3, 40.5]; long-term = 17.4 % [15.9, 19.9] in 2011/12). Long-term but not any high risk medication exposure was associated with older ages (85 years or over). Women and people with higher polypharmacy burden were at greater risk of exposure; lower socio-economic status was not associated. Ten drugs/drug classes accounted for most of high risk medication prescribing in 2011/12. Conclusions: High risk medication prescribing has not increased over time against a background of increasing polypharmacy in the UK. Half of patients receiving high risk medications do so for less than a year. Reducing or optimising the use of a limited number of drugs could dramatically reduce high risk medications in older people. Further research is needed to investigate why the oldest old and women are at greater risk. Interventions to reduce high risk medications may need to target shorter and long-term use separately.
Resumo:
Single component geochemical maps are the most basic representation of spatial elemental distributions and commonly used in environmental and exploration geochemistry. However, the compositional nature of geochemical data imposes several limitations on how the data should be presented. The problems relate to the constant sum problem (closure), and the inherently multivariate relative information conveyed by compositional data. Well known is, for instance, the tendency of all heavy metals to show lower values in soils with significant contributions of diluting elements (e.g., the quartz dilution effect); or the contrary effect, apparent enrichment in many elements due to removal of potassium during weathering. The validity of classical single component maps is thus investigated, and reasonable alternatives that honour the compositional character of geochemical concentrations are presented. The first recommended such method relies on knowledge-driven log-ratios, chosen to highlight certain geochemical relations or to filter known artefacts (e.g. dilution with SiO2 or volatiles). This is similar to the classical normalisation approach to a single element. The second approach uses the (so called) log-contrasts, that employ suitable statistical methods (such as classification techniques, regression analysis, principal component analysis, clustering of variables, etc.) to extract potentially interesting geochemical summaries. The caution from this work is that if a compositional approach is not used, it becomes difficult to guarantee that any identified pattern, trend or anomaly is not an artefact of the constant sum constraint. In summary the authors recommend a chain of enquiry that involves searching for the appropriate statistical method that can answer the required geological or geochemical question whilst maintaining the integrity of the compositional nature of the data. The required log-ratio transformations should be applied followed by the chosen statistical method. Interpreting the results may require a closer working relationship between statisticians, data analysts and geochemists.
Resumo:
Conventional practice in Regional Geochemistry includes as a final step of any geochemical campaign the generation of a series of maps, to show the spatial distribution of each of the components considered. Such maps, though necessary, do not comply with the compositional, relative nature of the data, which unfortunately make any conclusion based on them sensitive
to spurious correlation problems. This is one of the reasons why these maps are never interpreted isolated. This contribution aims at gathering a series of statistical methods to produce individual maps of multiplicative combinations of components (logcontrasts), much in the flavor of equilibrium constants, which are designed on purpose to capture certain aspects of the data.
We distinguish between supervised and unsupervised methods, where the first require an external, non-compositional variable (besides the compositional geochemical information) available in an analogous training set. This external variable can be a quantity (soil density, collocated magnetics, collocated ratio of Th/U spectral gamma counts, proportion of clay particle fraction, etc) or a category (rock type, land use type, etc). In the supervised methods, a regression-like model between the external variable and the geochemical composition is derived in the training set, and then this model is mapped on the whole region. This case is illustrated with the Tellus dataset, covering Northern Ireland at a density of 1 soil sample per 2 square km, where we map the presence of blanket peat and the underlying geology. The unsupervised methods considered include principal components and principal balances
(Pawlowsky-Glahn et al., CoDaWork2013), i.e. logcontrasts of the data that are devised to capture very large variability or else be quasi-constant. Using the Tellus dataset again, it is found that geological features are highlighted by the quasi-constant ratios Hf/Nb and their ratio against SiO2; Rb/K2O and Zr/Na2O and the balance between these two groups of two variables; the balance of Al2O3 and TiO2 vs. MgO; or the balance of Cr, Ni and Co vs. V and Fe2O3. The largest variability appears to be related to the presence/absence of peat.
Resumo:
The complexity of modern geochemical data sets is increasing in several aspects (number of available samples, number of elements measured, number of matrices analysed, geological-environmental variability covered, etc), hence it is becoming increasingly necessary to apply statistical methods to elucidate their structure. This paper presents an exploratory analysis of one such complex data set, the Tellus geochemical soil survey of Northern Ireland (NI). This exploratory analysis is based on one of the most fundamental exploratory tools, principal component analysis (PCA) and its graphical representation as a biplot, albeit in several variations: the set of elements included (only major oxides vs. all observed elements), the prior transformation applied to the data (none, a standardization or a logratio transformation) and the way the covariance matrix between components is estimated (classical estimation vs. robust estimation). Results show that a log-ratio PCA (robust or classical) of all available elements is the most powerful exploratory setting, providing the following insights: the first two processes controlling the whole geochemical variation in NI soils are peat coverage and a contrast between “mafic” and “felsic” background lithologies; peat covered areas are detected as outliers by a robust analysis, and can be then filtered out if required for further modelling; and peat coverage intensity can be quantified with the %Br in the subcomposition (Br, Rb, Ni).
Resumo:
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.
Resumo:
This study investigates how habitat variation affects sett density, the number of animals per social group and group territory size in the badger (Meles meles). Identical methods were applied in three habitat types: lowland parkland with mixed woodland, pastoral farmland and upland rough pasture with moorland, representing areas of presumed good, medium and poor badger habitat, respectively. Contiguous main setts were identified and bait-marking was used to estimate territory size. Group size was estimated by direct enumeration. Variation in sett density, group size and territory size supported the hypothesis that badger group and territory size are influenced by habitat type. This was further supported by analyses of data from other studies in the British Isles. The implications for badger spatial ecology, badger survey techniques and the badger's role in the epidemiology of TB are discussed.