31 resultados para Habitat (Ecology) - Australia
Resumo:
Resource partitioning by aspidochirote holothurians from Beacon Island, Western Australia is largely on the basis of distinct macro- and micro-habitat preferences. Where two or more species occur together or overlap, food partitioning may be by using distinct feeding techniques (Holothuria cinerascens (Brandt), H. impatiens (Forskal) and H. difficilis Semper) or by particle selectivity (H. cf. pervicax Selenka and H. hartmeyeri Erwe). Methods of particle handling by the majority of species studied are similar, involving the use of tentacular nodules on sediment deposits but H. cinerascens collects particles from suspension in a dendrochirote-like tentacle. The nature and rôle of surface secretions are considered for both types of tentacles and the taxonomic value of tentacle form in the Holothurioidea questioned.
Resumo:
Cores from slopes east of the Great Barrier Reef (GBR) challenge traditional models for sedimentation on tropical mixed siliciclastic-carbonate margins. However, satisfactory explanations of sediment accumulation on this archetypal margin that include both hemipelagic and turbidite sedimentation remain elusive, as submarine canyons and their role in delivering coarse-grained turbidite deposits, are poorly understood. Towards addressing this problem we investigated the shelf and canyon system bordering the northern Ribbon Reefs and reconstructed the history of turbidite deposition since the Late Pleistocene. High-resolution bathymetric and seismic data show a large paleo-channel system that crosses the shelf before connecting with the canyons via the inter-reef passages between the Ribbon Reefs. High-resolution bathymetry of the canyon axis reveals a complex and active system of channels, sand waves, and local submarine landslides. Multi-proxy examination of three cores from down the axis of the canyon system reveals 18 turbidites and debrites, interlayered with hemipelagic muds, that are derived from a mix of shallow and deep sources. Twenty radiocarbon ages indicate that siliciclastic-dominated and mixed turbidites only occur prior to 31 ka during Marine Isotope Stage (MIS) 3, while carbonate-dominated turbidites are well established by 11 ka in MIS1 until as recently as 1.2 ka. The apparent lack of siliciclastic-dominated turbidites and presence of only a few carbonate-dominated turbidites during the MIS2 lowstand are not consistent with generic models of margin sedimentation but might also reflect a gap in the turbidite record. These data suggest that turbidite sedimentation in the Ribbon Reef canyons, probably reflects the complex relationship between the prolonged period (> 25 ka) of MIS3 millennial sea level changes and local factors such as the shelf, inter-reef passage depth, canyon morphology and different sediment sources. On this basis we predict that the spatial and temporal patterns of turbidite sedimentation could vary considerably along the length of the GBR margin.
Resumo:
Invasive species pose a major threat to biodiversity but provide an opportunity to describe the processes that lead to changes in a species’ range. The bank vole (Myodes glareolus) is an invasive rodent that was introduced to Ireland in the early twentieth century. Given its continuing range expansion, the substantial empirical data on its spread thus far, and the absence of any eradication program, the bank vole in Ireland represents a unique model system for studying the mechanisms influencing the rate of range expansion in invasive small mammals. We described the invasion using a reaction–diffusion model informed by empirical data on life history traits and demographic parameters. We subsequently modelled the processes involved in its range expansion using a rule-based spatially explicit simulation. Habitat suitability interacted with density-dependent parameters to influence dispersal, most notably the density at which local populations started to donate emigrating individuals, the number of dispersing individuals and the direction of dispersal. Whilst local habitat variability influenced the rate of spread, on a larger scale the invasion resembled a simple reaction–diffusion process. Our results suggest a Type 1 range expansion where the rate of expansion is generally constant over time, but with some evidence for a lag period following introduction. We demonstrate that a two-parameter empirical model and a rule-based spatially explicit simulation are sufficient to accurately describe the invasion history of a species that exhibits a complex, density-dependent pattern of dispersal.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
Differences in stable-isotope values, morphology and ecology in whitefish Coregonus lavaretus were investigated between the three basins of Loch Lomond. The results are discussed with reference to a genetic investigation to elucidate any substructuring or spawning site fidelity. Foraging fidelity between basins of Loch Lomond was indicated by delta 13C and delta 15N values of C. lavaretus muscle tissue. There was, however, no evidence of the existence of sympatric morphs in the C. lavaretus population. A previous report of two C. lavaretus 'species' in Loch Lomond probably reflects natural variation between individuals within a single mixed population.
Resumo:
Although widespread, the ecology of the whiskered bat, Myotis mystacinus in Europe remains poorly understood. Ireland is positioned at the most western extreme of this species' range. To ascertain the ecology of M. mystacinus at its geographic range extreme, the roosting behaviour, home range and habitat use of females in a maternity roost in Ireland was investigated by radio-tracking. M. mystacinus were active in a diversity of habitats: namely, mixed woodland, riparian vegetation, arable land and rough grassland. However, only mixed woodland and riparian habitats were selected as core foraging areas. This is in contrast to a previous study from Britain where only pasture was utilised but is in agreement with data from Slovakia, where woodland was also selected, whilst riparian areas were also utilised by this species in Germany. A high degree of overlap in the foraging areas of individuals was observed. A total of seven roosts were utilised by tracked bats and roost switching behaviour was observed. We discuss our contrasting results in respect to range limitations, regional variability in landscape structure and the composition of bat communities. The present results have implications for the conservation of M. mystacinus within Ireland and other parts of its range, highlighting the need for range wide ecological studies. Regional variability in the ecology of bats related to landscape factors is an important consideration for bat conservation and therefore must be incorporated into future management plans. (C) 2012 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.
Resumo:
We predicted that the probability of egg occurrence of salamander Salamandrina perspicillata depended on stream features and predation by native crayfish Austropotamobius fulcisianus and the introduced trout Salmo trutta. We assessed the presence of S. perspicillata at 54 sites within a natural reserve of southern Tuscany, Italy. Generalized linear models with binomial errors were constructed using egg presence/absence and altitude, stream mean size and slope, electrical conductivity, water pH and temperature, and a predation factor, defined according to the presence/absence of crayfish and trout. Some competing models also included an autocovariate term, which estimated how much the response variable at any one sampling point reflected response values at surrounding points. The resulting models were compared using Akaike's information criterion. Model selection led to a subset of 14 models with Delta AIC(c) <7 (i.e., models ranging from substantial support to considerably less support), and all but one of these included an effect of predation. Models with the autocovariate term had considerably more support than those without the term. According to multimodel inference, the presence of trout and crayfish reduced the probability of egg occurrence from a mean level of 0.90 (SE limits: 0.98-0.55) to 0.12 (SE limits: 0.34-0.04). The presence of crayfish alone had no detectable effects (SE limits: 0.86-0.39). The results suggest that introduced trout have a detrimental effect on the reproductive output of S. perspicillata and confirm the fundamental importance of distinguishing the roles of endogenous and exogenous forces that act on population distribution.
Resumo:
Marine Protected Areas (MPAs) are an important conservation tool. For marine predators, recent research has focused on the use of Species Distribution Models (SDMs) to identify proposed sites. We used a maximum entropy modelling approach based on static and dynamic oceanographic parameters to determine optimal feeding habitat for black-legged kittiwakes (Rissa tridactyla) at two colonies during two consecutive breeding seasons (2009 and 2010). A combination of Geographic Positioning System (GPS) loggers and Time-Depth Recorders (TDRs) attributed feeding activity to specific locations. Feeding areas were <30 km from the colony, <40 km from land, in productive waters, 25–175m deep. The predicted extent of optimal habitat declined at both colonies between 2009 and 2010 coincident with declines in reproductive success. Whilst the area of predicted optimal habitat changed, its location was spatially stable between years. There was a close match between observed feeding locations and habitat predicted as optimal at one colony (Lambay Island, Republic of Ireland), but a notable mismatch at the other (Rathlin Island, Northern Ireland). Designation of an MPA at Rathlin may, therefore, be less effective than a similar designation at Lambay perhaps due to the inherent variability in currents and sea state in the North Channel compared to the comparatively stable conditions in the central Irish Sea. Current strategies for designating MPAs do not accommodate likely future redistribution of resources due to climate change. We advocate the development of new approaches including dynamic MPAs that track changes in optimal habitat and non-colony specific ecosystem management.
Resumo:
Organismal metabolic rates influence many ecological processes, and the mass-specific metabolic rate of organisms decreases with increasing body mass according to a power law. The exponent in this equation is commonly thought to be the three-quarter-power of body mass, determined by fundamental physical laws that extend across taxa. However, recent work has cast doubt as to the universality of this relationship, the value of 0.75 being an interspecies 'average' of scaling exponents that vary naturally between certain boundaries. There is growing evidence that metabolic scaling varies significantly between even closely related species, and that different values can be associated with lifestyle, activity and metabolic rates. Here we show that the value of the metabolic scaling exponent varies within a group of marine ectotherms, chitons (Mollusca: Polyplacophora: Mopaliidae), and that differences in the scaling relationship may be linked to species-specific adaptations to different but overlapping microhabitats. Oxygen consumption rates of six closely related, co-occurring chiton species from the eastern Pacific (Vancouver Island, British Columbia) were examined under controlled experimental conditions. Results show that the scaling exponent varies between species (between 0.64 and 0.91). Different activity levels, metabolic rates and lifestyle may explain this variation. The interspecific scaling exponent in these data is not significantly different from the archetypal 0.75 value, even though five out of six species-specific values are significantly different from that value. Our data suggest that studies using commonly accepted values such as 0.75 derived from theoretical models to extrapolate metabolic data of species to population or community levels should consider the likely variation in exponents that exists in the real world, or seek to encompass such error in their models. This study, as in numerous previous ones, demonstrates that scaling exponents show large, naturally occurring variation, and provides more evidence against the existence of a universal scaling law. © 2012 Elsevier B.V.
Resumo:
The European hare (Lepus europaeus) has declined throughout its native range but invaded numerous regions where it has negatively impacted native wildlife. In southern Sweden, it replaces the native mountain hare (L. timidus) through competition and hybridisation. We investigated temporal change in the invasive range of the European hare in Ireland, and compared its habitat use with the endemic Irish hare (L. timidus hibernicus). The range of the European hare was three times larger and its core range twice as large in 2012–2013 than in 2005. Its rate of radial range expansion was 0.73 km year−1 with its introduction estimated to have occurred ca. 1970. Both species utilised improved and rough grasslands and exhibited markedly similar regression coefficients with almost every land cover variable examined. Irish hares were associated with low fibre and high sugar content grass (good quality grazing) whilst the invader had a greater tolerance for low quality forage. European hares were associated with habitat patch edge density, suggesting it may be more suited to using hedgerows as diurnal resting sites than the Irish hare. Consequently, the invader had a wider niche breadth than the native but their niche overlap was virtually complete. Given the impact of the European hare on native species elsewhere, and its apparent pre-adaption for improved grasslands interspersed with arable land (a habitat that covers 70 % of Ireland), its establishment and range expansion poses a significant threat to the ecological security of the endemic Irish hare, particularly given their ecological similarities.
Resumo:
Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions.
Resumo:
Hyperiid amphipods (Order Amphipoda, Suborder Hyperiidea) are known to infest gelatinous zooplankton. However, the temporal backdrop to these associations is less clear, given that data are often gathered during discrete sampling events rather than over time. In general, hyperiids are considered to be pelagic: however, for individuals associated with metagenic jellyfishes in temperate shallow shelf seas, this may not always be the case, as the majority of their gelatinous hosts are present in the water column from spring to the onset of autumn. Here, we explored the temporal patterns of colonisation and overall duration of the association between Hyperia galba and 3 scyphozoan jellyfish species (Aurelia aurita, Cyanea capillata and C. lamarckii) in a temperate coastal system (Strangford Lough, Northern Ireland) during 2010 and 2012. Concomitantly, we used carbon and nitrogen stable isotope ratios to examine whether hyperiid infestation represented a permanent association with their host or was part of a more complex life history. We found that jellyfish were colonised by H. galba ca. 2 mo after they are first observed in the lough and that H. galba reached 100% prevalence in the different jellyfish species shortly before the medusae of each species disappeared from the water column. It is possible that some jellyfish overwintered in deeper water, prolonging the association between H. galba and their hosts. However, all the medusae sampled during the spring and early summer (whether they were newly emerged or had overwintered from the previous season) were not infected with hyperiids, suggesting that such behaviour was uncommon or that individuals had become dissociated from their host during the winter. Further evidence of temporary association came from stable isotope data, where δ13C and δ15N isotope ratios were indicative of feeding outside of their host prior to jellyfish colonisation. In combination, these findings suggest alternating habitat associations for H. galba, with the amphipods spending the majority of the year outside of the 3 scyphozoan species considered here.
Resumo:
The impact of invasive bank vole (Myodes glareolus) and greater white-toothed shrew (Crocidura russula) on indigenous Irish small mammals, varies with season and habitat. We caught bank voles in deciduous woodland, young coniferous plantations and open habitats such as rank grass. The greater white-toothed shrew was absent from deciduous woods and plantations but did use open habitats with low level cover in addition to field margins. Numbers of both invasive species in field margins during summer were higher than in the previous spring. The indigenous wood mouse (Apodemus sylvaticus) and pygmy shrew (Sorex minutus), differed in degrees of negative response to invasive species. Wood mice with bank voles in hedgerows had reduced recruitment and lower peak abundance. This effect was less extreme where both invasive species were present. Wood mice numbers along field margins and open habitats were significantly depressed by the presence of the bank vole with no such effect in deciduous woodland or coniferous plantations. Summer recruitment in pygmy shrews was reduced in hedgerows with bank voles. Where greater white-toothed shrew was present, the pygmy shrew was entirely absent from field margins. Species replacement due to invasive small mammals is occurring in their major habitat i.e. field margins and open habitats where there is good ground cover. Pygmy shrew will probably disappear from these habitats throughout Ireland. Wood mice and possibly pygmy shrew may survive in deciduous woodland and conifer plantations. Mitigation of impacts of invasive species should include expansion of woodland in which native species can survive.
Resumo:
Understanding the dietary consumption and selection of wild populations of generalist herbivores is hampered by the complex array of factors. Here, we determine the influence of habitat, season, and animal density, sex, and age on the diet consumption and selection of 426 red deer (Cervus elaphus scoticus) culled in Fiordland National Park, New Zealand. Our site differs from studies elsewhere both in habitat (evergreen angiosperm-dominated forests) and the intensity of hunting pressures. We predicted that deer would not consume forage in proportion to its relative availability, and that dietary consumption would change among and within years in response to hunting pressures that would also limit opportunities for age and sex segregation. Using canonical correspondence analysis, we evaluated the relative importance of different drivers of variation in diet consumption assessed from gut content and related these to available forage in the environment. We found that altitude explained the largest proportion of variation in diet consumption, reflecting the ability of deer to alter their consumption and selection in relation to their foraging grounds. Grasses formed a high proportion of the diet consumption, even for deer culled several kilometres from the alpine grasslands. In the winter months, when the alpine grasslands were largely inaccessible, less grass was eaten and deer resorted to woody plants that were avoided in the summer months. Surprisingly, there were no significant dietary differences between adults and juveniles and only subtle differences between the sexes. Sex-based differences in diet consumption are commonly observed in ungulate species and we suggest that they may have been reduced in our study area owing to decreased heterogeneity in available forage as the diversity of palatable species decreased under high deer browsing pressures, or by intense hunting pressure. © 2009 The Authors. Journal compilation © 2009 Ecological Society of Australia.