21 resultados para HRH Crown Prince Hassan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Design of Experiments (DoE) analysis was undertaken to generate a list of configurations for CFD numerical simulation of an aircraft crown compartment. Fitted regression models were built to predict the convective heat transfer coefficients of thermally sensitive dissipating elements located inside this compartment. These are namely the SEPDC and the Route G. Currently they are positioned close to the fuselage and it is of interest to optimise the heat transfer for reliability and performance purposes. Their locations and the external fuselage surface temperature were selected as input variables for the DoE. The models fit the CFD data with values ranging from 0.878 to 0.978, and predict that the optimum locations in terms of heat transfer are when the elements are positioned as close to the crown floor as possible ( and ?min. limits), where they come in direct contact with the air flow from the cabin ventilation system, and when they are positioned close to the centreline ( and ?CL). The methodology employed allows aircraft thermal designers to optimise equipment placement in confined areas of an aircraft during the design phase. The determined models should be incorporated into global aircraft numerical models to improve accuracy and reduce model size and computational time. © 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8 GPa, 4 GPa, 8 GPa, 18.3 GPa and 40 GPa; the four lower values are representative of currently used cementing lutes and 40 GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tactility Factory Story and Panels on display as part of Showcase of Northern Irish Innovation, Pump House. Organized by Innovation Centre, NI Science Park, Belfast. Showcasing 14 of NI most innovative companies. (Jan 2013-ongoing) presented to HRH Prince Andrew (Jan 2013)