47 resultados para HISTORICAL DATA-ANALYSIS
Resumo:
The aim of this paper is to equip readers with an understanding of the principles of qualitative data analysis and offer a practical example of how analysis might be undertaken in an interview-based study.
Resumo:
1) Executive Summary
Legislation (Autism Act NI, 2011), a cross-departmental strategy (Autism Strategy 2013-2020) and a first action plan (2013-2016) have been developed in Northern Ireland in order to support individuals and families affected by Autism Spectrum Disorder (ASD) without a prior thorough baseline assessment of need. At the same time, there are large existing data sets about the population in NI that had never been subjected to a secondary data analysis with regards to data on ASD. This report covers the first comprehensive secondary data analysis and thereby aims to inform future policy and practice.
Following a search of all existing, large-scale, regional or national data sets that were relevant to the lives of individuals and families affected by Autism Spectrum Disorder (ASD) in Northern Ireland, extensive secondary data analyses were carried out. The focus of these secondary data analyses was to distill any ASD related data from larger generic data sets. The findings are reported for each data set and follow a lifespan perspective, i.e., data related to children is reported first before data related to adults.
Key findings:
Autism Prevalence:
Of children born in 2000 in the UK,
• 0.9% (1:109) were reported to have ASD, when they were 5-year old in 2005;
• 1.8% (1:55) were reported to have ASD, when they were 7-years old in 2007;
• 3.5% (1:29) were reported to have ASD, when they were 11-year old in 2011.
In mainstream schools in Northern Ireland
• 1.2% of the children were reported to have ASD in 2006/07;
• 1.8% of the children were reported to have ASD in 2012/13.
Economic Deprivation:
• Families of children with autism (CWA) were 9%-18% worse off per week than families of children not on the autism spectrum (COA).
• Between 2006-2013 deprivation of CWA compared to COA nearly doubled as measured by eligibility for free school meals (from near 20 % to 37%)
• In 2006, CWA and COA experienced similar levels of deprivation (approx. 20%), by 2013, a considerable deprivation gap had developed, with CWA experienced 6% more deprivation than COA.
• Nearly 1/3 of primary school CWA lived in the most deprived areas in Northern Ireland.
• Nearly ½ of children with Asperger’s Syndrome who attended special school lived in the most deprived areas.
Unemployment:
• Mothers of CWA were 6% less likely to be employed than mothers of COA.
• Mothers of CWA earned 35%-56% less than mothers of COA.
• CWA were 9% less likely to live in two income families than COA.
Health:
• Pre-diagnosis, CWA were more likely than COA to have physical health problems, including walking on level ground, speech and language, hearing, eyesight, and asthma.
• Aged 3 years of age CWA experienced poorer emotional and social health than COA, this difference increased significantly by the time they were 7 years of age.
• Mothers of young CWA had lower levels of life satisfaction and poorer mental health than mothers of young COA.
Education:
• In mainstream education, children with ASD aged 11-16 years reported less satisfaction with their social relationships than COA.
• Younger children with ASD (aged 5 and 7 years) were less likely to enjoy school, were bullied more, and were more reluctant to attend school than COA.
• CWA attended school 2-3 weeks less than COA .
• Children with Asperger’s Syndrome in special schools missed the equivalent of 8-13 school days more than children with Asperger’s Syndrome in mainstream schools.
• Children with ASD attending mainstream schooling were less likely to gain 5+ GCSEs A*-C or subsequently attend university.
Further and Higher Education:
• Enrolment rates for students with ASD have risen in Further Education (FE), from 0% to 0.7%.
• Enrolment rates for students with ASD have risen in Higher Education (HE), from 0.28% to 0.45%.
• Students with ASD chose to study different subjects than students without ASD, although other factors, e.g., gender, age etc. may have played a part in subject selection.
• Students with ASD from NI were more likely than students without ASD to choose Northern Irish HE Institutions rather than study outside NI.
Participation in adult life and employment:
• A small number of adults with ASD (n=99) have benefitted from DES employment provision over the past 12 years.
• It is unknown how many adults with ASD have received employment support elsewhere (e.g. Steps to Work).
•
Awareness and Attitudes in the General Population:
• In both the 2003 and 2012 NI Life and Times Survey (NILTS), NI public reported positive attitudes towards the inclusion of children with ASD in mainstream education (see also BASE Project Vol. 2).
Gap Analysis Recommendations:
This was the first comprehensive secondary analysis with regards to ASD of existing large-scale data sets in Northern Ireland. Data gaps were identified and further replications would benefit from the following data inclusion:
• ASD should be recorded routinely in the following datasets:
o Census;
o Northern Ireland Survey of Activity Limitation (NISALD);
o Training for Success/Steps to work; Steps to Success;
o Travel survey;
o Hate crime; and
o Labour Force Survey.
• Data should be collected on the destinations/qualifications of special school leavers.
• NILT Survey autism module should be repeated in 5 years time (2017) (see full report of 1st NILT Survey autism module 2012 in BASE Project Report Volume 2).
• General public attitudes and awareness should be assessed for children and young people, using the Young Life and Times Survey (YLT) and the Kids Life and Times Survey (KLT); (this work is underway, Dillenburger, McKerr, Schubolz, & Lloyd, 2014-2015).
Resumo:
TAP pulse responses are normally analysed using moments, which are integrals of the full TAP pulse response. However, in some cases the entire pulse response may not be recorded due to technical reasons, thereby compromising any data analysis due to moments generated from incomplete pulse responses. The current work discloses the development of a function which mathematically expands the tail of a TAP pulse response, so that the TAP data analysis can be accurately conducted. This newly developed analysis method has been applied to the oxidative dehydrogenation of ethane over Co–Cr–Sn–WOx/α-Al2O3 and Co–Cr–Sn–WOx/α-Al2O3 catalysts as a case study.
Resumo:
Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.
Resumo:
Due to the variability of wind power, it is imperative to accurately and timely forecast the wind generation to enhance the flexibility and reliability of the operation and control of real-time power. Special events such as ramps, spikes are hard to predict with traditional methods using solely recently measured data. In this paper, a new Gaussian Process model with hybrid training data taken from both the local time and historic dataset is proposed and applied to make short-term predictions from 10 minutes to one hour ahead. A key idea is that the similar pattern data in history are properly selected and embedded in Gaussian Process model to make predictions. The results of the proposed algorithms are compared to those of standard Gaussian Process model and the persistence model. It is shown that the proposed method not only reduces magnitude error but also phase error.
Resumo:
Quantile normalization (QN) is a technique for microarray data processing and is the default normalization method in the Robust Multi-array Average (RMA) procedure, which was primarily designed for analysing gene expression data from Affymetrix arrays. Given the abundance of Affymetrix microarrays and the popularity of the RMA method, it is crucially important that the normalization procedure is applied appropriately. In this study we carried out simulation experiments and also analysed real microarray data to investigate the suitability of RMA when it is applied to dataset with different groups of biological samples. From our experiments, we showed that RMA with QN does not preserve the biological signal included in each group, but rather it would mix the signals between the groups. We also showed that the Median Polish method in the summarization step of RMA has similar mixing effect. RMA is one of the most widely used methods in microarray data processing and has been applied to a vast volume of data in biomedical research. The problematic behaviour of this method suggests that previous studies employing RMA could have been misadvised or adversely affected. Therefore we think it is crucially important that the research community recognizes the issue and starts to address it. The two core elements of the RMA method, quantile normalization and Median Polish, both have the undesirable effects of mixing biological signals between different sample groups, which can be detrimental to drawing valid biological conclusions and to any subsequent analyses. Based on the evidence presented here and that in the literature, we recommend exercising caution when using RMA as a method of processing microarray gene expression data, particularly in situations where there are likely to be unknown subgroups of samples.
Resumo:
Statistics are regularly used to make some form of comparison between trace evidence or deploy the exclusionary principle (Morgan and Bull, 2007) in forensic investigations. Trace evidence are routinely the results of particle size, chemical or modal analyses and as such constitute compositional data. The issue is that compositional data including percentages, parts per million etc. only carry relative information. This may be problematic where a comparison of percentages and other constraint/closed data is deemed a statistically valid and appropriate way to present trace evidence in a court of law. Notwithstanding an awareness of the existence of the constant sum problem since the seminal works of Pearson (1896) and Chayes (1960) and the introduction of the application of log-ratio techniques (Aitchison, 1986; Pawlowsky-Glahn and Egozcue, 2001; Pawlowsky-Glahn and Buccianti, 2011; Tolosana-Delgado and van den Boogaart, 2013) the problem that a constant sum destroys the potential independence of variances and covariances required for correlation regression analysis and empirical multivariate methods (principal component analysis, cluster analysis, discriminant analysis, canonical correlation) is all too often not acknowledged in the statistical treatment of trace evidence. Yet the need for a robust treatment of forensic trace evidence analyses is obvious. This research examines the issues and potential pitfalls for forensic investigators if the constant sum constraint is ignored in the analysis and presentation of forensic trace evidence. Forensic case studies involving particle size and mineral analyses as trace evidence are used to demonstrate the use of a compositional data approach using a centred log-ratio (clr) transformation and multivariate statistical analyses.
Resumo:
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.
Resumo:
In recent years external beam radiotherapy (EBRT) has been proposed as a treatment for the wet form of age-related macular degeneration (AMD) where choroidal neovascularization (CNV) is the hallmark. While the majority of pilot (Phase I) studies have reported encouraging results, a few have found no benefit, i.e. EBRT was not found to result in either improvement or stabilization of visual acuity of the treated eye. The natural history of visual loss in untreated CNV of AMD is highly variable. Loss of vision is influenced mainly by the presenting acuity, and size and composition of the lesion, and to a lesser extent by a variety of other factors. Thus the variable outcome reported by the small Phase I studies of EBRT published to date may simply reflect the variation in baseline factors. We therefore obtained information on 409 patients treated with EBRT from eight independent centres, which included details of visual acuity at baseline and at subsequent follow-up visits. Analysis of the data showed that 22.5% and 14.9% of EBRT-treated eyes developed moderate and severe loss of vision, respectively, during an average follow-up of 13 months. Initial visual acuity, which explained 20.5% of the variation in visual loss, was the most important baseline factor studied. Statistically significant differences in loss of vision were observed between centres, after considering the effects of case mix factors. Comparisons with historical data suggested that while moderate visual loss was similar to that of the natural history of the disease, the likelihood of suffering severe visual loss was halved. However, the benefit in terms of maintained/improved vision in the treated eye was modest.
Resumo:
Identifying differential expression of genes in psoriatic and healthy skin by microarray data analysis is a key approach to understand the pathogenesis of psoriasis. Analysis of more than one dataset to identify genes commonly upregulated reduces the likelihood of false positives and narrows down the possible signature genes. Genes controlling the critical balance between T helper 17 and regulatory T cells are of special interest in psoriasis. Our objectives were to identify genes that are consistently upregulated in lesional skin from three published microarray datasets. We carried out a reanalysis of gene expression data extracted from three experiments on samples from psoriatic and nonlesional skin using the same stringency threshold and software and further compared the expression levels of 92 genes related to the T helper 17 and regulatory T cell signaling pathways. We found 73 probe sets representing 57 genes commonly upregulated in lesional skin from all datasets. These included 26 probe sets representing 20 genes that have no previous link to the etiopathogenesis of psoriasis. These genes may represent novel therapeutic targets and surely need more rigorous experimental testing to be validated. Our analysis also identified 12 of 92 genes known to be related to the T helper 17 and regulatory T cell signaling pathways, and these were found to be differentially expressed in the lesional skin samples.
Resumo:
Retrospective clinical datasets are often characterized by a relatively small sample size and many missing data. In this case, a common way for handling the missingness consists in discarding from the analysis patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding the reduction of the sample size and allowing methods to deal with complete data later on. Moreover, methodologies for data imputation might depend on the particular purpose and might achieve better results by considering specific characteristics of the domain. The problem of missing data treatment is studied in the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies among the clinical variables with a Bayesian network, which is then used to perform data imputation, thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly learned from the incomplete data using a structural expectation–maximization (EM) procedure in which the maximization step is performed with an exact anytime method, so that the only source of approximation is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually outperformed several existing methods for data imputation and the imputation so obtained improved the stratification estimated by the survival tree (especially with respect to using surrogate splits).
Resumo:
The predominant fear in capital markets is that of a price spike. Commodity markets differ in that there is a fear of both upward and down jumps, this results in implied volatility curves displaying distinct shapes when compared to equity markets. The use of a novel functional data analysis (FDA) approach, provides a framework to produce and interpret functional objects that characterise the underlying dynamics of oil future options. We use the FDA framework to examine implied volatility, jump risk, and pricing dynamics within crude oil markets. Examining a WTI crude oil sample for the 2007–2013 period, which includes the global financial crisis and the Arab Spring, strong evidence is found of converse jump dynamics during periods of demand and supply side weakness. This is used as a basis for an FDA-derived Merton (1976) jump diffusion optimised delta hedging strategy, which exhibits superior portfolio management results over traditional methods.