19 resultados para HEARN, LAFCADIO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the latest analysis and results from SEPPCoN (Survey of Ensemble Physical Properties of Cometary Nuclei). This on-going survey involves studying 100 JFCs - about 25% of the known population - at both mid-infrared and visible wave-lengths to constrain the distributions of sizes, shapes, spins, and albedos of this population. Having earlier reported results from measuring thermal emissions of our sample nuclei [1,2,3,4], we report here progress on the visible-wavelength observations that we have obtained at many ground-based facilities in Chile, Spain, and the United States. To date we have attempted observations of 91% of our sample of 100 JFCs, and at least 64 of those were successfully detected. In most cases the comets were at heliocentric distances between 3.0 and 6.5 AU so as to decrease the odds of a comet having a coma. Of the 64 detected comets, 48 were apparently bare, having no extended emission. Our datasets are further augmented by archival data and photometry from the NEAT program [5]. An important goal of SEPPCoN is to accumulate a large comprehensive set of high quality physical data on cometary nuclei in order to make accurate statistical comparisons with other minor-body populations such as Trojans, Centaurs, and Kuiper-belt objects. Information on the size, shape, spin-rate, albedo and color distributions is critical for understanding their origins and evolutionary processes affecting them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims: Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods: We present mid-infrared photometry in two filters (16 and 22 μm) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM). We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results: We obtain a well constrained beaming parameter (η = 1.39±0.26) and obtain a diameter and geometric albedo of D = 3.46±0.32 km, and pV = 0.059±0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995, P&SS, 43, 733), Kraemer et al. (2005, AJ, 130, 2363) and Reach et al. (2007, Icarus, 191, 298). Conclusions: The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm-2s-0.5 K-1 when it is at r = 1 AU, which is slightly over the limit of 30 Jm-2 s-0.5 K-1 derived by Groussin et al. (2009, Icarus, 199, 568) for the thermal inertia of the nucleus of comet 22P/Kopff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new results from SEPPCoN, a Survey of Ensemble Physical Properties of Cometary Nuclei. This project is currently surveying 100 Jupiter-family comets (JFCs) to measure the mid-infrared thermal emission and visible reflected sunlight of the nuclei. The scientific goal is to determine the distributions of radius, geometric albedo, thermal inertia, axial ratio, and color among the JFC nuclei. In the past we have presented results from the completed mid-IR observations of our sample [1]; here we present preliminary results from ongoing, broadband visible-wavelength observations of nuclei obtained from a variety of ground-based facilities (Mauna Kea, Cerro Pachon, La Silla, La Palma, Apache Point, Table Mtn., and Palomar Mtn.), including contributions from the Near Earth Asteroid Telescope project (NEAT) archive. The nuclei were observed at high heliocentric distance (usually over 4 AU) and so many comets show either no or little contamination from dust coma. While several nuclei have been observed as snapshots, we have multiepoch photometry for many of our targets. With our datasets we are building a large database of photometry, and such a database is essential to the derivation of albedo and shape of a large number of nuclei, and to the understanding of biases in the survey. Support for this work was provided by NSF and the NASA Planetary Astronomy program. Reference: [1] Fernandez, Y.R., et al. 2007, BAAS 39, 827.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The ESA Rosetta spacecraft, currently orbiting around comet 67P/Churyumov-Gerasimenko, has already provided in situ measurements of the dust grain properties from several instruments,particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution.
Aims. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014.
Methods. A Monte Carlo dust tail code, which has already been used to characterise the dust environments of several comets and active asteroids, has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately.
Results. The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is α = −3, instead of α = −2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 AU, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 AU. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment.