18 resultados para H-alpha Emission
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.
Resumo:
Linear acceleration emission occurs when a charged particle is accelerated parallel to its velocity. We evaluate the spectral and angular distribution of this radiation for several special cases, including constant acceleration (hyperbolic motion) of finite duration. Based on these results, we find the following general properties of the emission from an electron in a linear accelerator that can be characterized by an electric field E acting over a distance L: (1) the spectrum extends to a cutoff frequency (h) over bar omega(c)/mc(2) approximate to L(E/E(Schw))(2)/(lambda) over bar (C), where E(Schw) = 1.3 x 10(18) V m(-1) is the Schwinger critical field and (lambda) over bar (C) = (h) over bar /mc = 3.86 x 10(-13) m is the Compton wavelength of the electron, (2) the total energy emitted by a particle traversing the accelerator is 4/3 alpha(f)(h) over bar omega(c) in accordance with the standard Larmor formula where alpha(f) is the fine-structure constant, and (3) the low frequency spectrum is flat for hyperbolic trajectories, but in general depends on the details of the accelerator. We also show that linear acceleration emission complements curvature radiation in the strongly magnetized pair formation regions in pulsar magnetospheres. It dominates when the length L of the accelerator is less than the formation length rho/gamma of curvature photons, where rho is the radius of curvature of the magnetic field lines and gamma the Lorentz factor of the emitting particle. In standard static models of pair creating regions linear acceleration emission is negligible, but it is important in more realistic dynamical models in which the accelerating field fluctuates on a short length scale.
Resumo:
A spectroscopic study of the He-alpha (1s(2) S-1(0) - 1s2p P-1(1)) line emission (4749.73 eV) from high density plasma was conducted. The plasma was produced by irradiating Ti targets with intense (I approximate to 1x10(19) W/cm(2)), 400nm wavelength high contrast, short (45fs) p-polarized laser pulses at an angle of 45 degrees. A line shift up to 3.4 +/- 1.0 eV (1.9 +/- 0.55 m angstrom) was observed in the He-alpha line. The line width of the resonance line at FWHM was measured to be 12.1 +/- 0.6 eV (6.7 +/- 0.35 m angstrom). For comparison, we looked into the emission of the same spectral line from plasma produced by irradiating the same target with laser pulses of reduced intensities (approximate to 10(17) W/cm(2)): we observed a spectral shift of only 1.8 +/- 1.0 eV (0.9 +/- 0.55m angstrom) and the line-width measures up to 5.8 +/- 0.25 eV (2.7 +/- 0.35 m angstrom). These data provide evidence of plasma polarization shift of the Ti He-alpha line.