57 resultados para Gram-positive pathogens
Resumo:
Yeasts and filamentous fungi are beginning to emerge as significant microbial pathogens in patients with cystic fibrosis (CF), particularly in relation to allergic-type responses, as seen in patients with allergic bronchopulmonary aspergillosis (ABPA), Aspergillus bronchitis and in invasive fungal disease in lung transplant patients. Four fungal media were compared in this study, including Sabouraud Dextrose Agar (SDA) and Medium B, with and without the addition of selective antibiotics, where antibiotic-supplemented media were designated with (+). These media were compared for their ability to suppress contaminating, mainly Gram-ve pathogens, in CF sputa (Pseudomonas aeruginosa, Burkholderia cepacia complex [BCC] organisms) and to enhance the growth of fungi present in CF sputum. Medium B consisted of glucose (16.7 g/l), agar (20 g/l), yeast extract (30 g/l) and peptone (6.8 g/l) at pH 6.3 and both SDA(+) and Medium B+ were supplemented with cotrimethoxazole, 128 mg/l; chloramphenicol, 50 mg/l; ceftazidime, 32 mg/l; colistin, 24 mg/l). Employment of SDA(+) or Medium B+ allowed an increase in specificity in the detection of yeasts and moulds, by 42.8% and 39.3%, respectively, over SDA when used solely. SDA(+) had a greater ability than Medium B+ to suppress bacterial growth from predominantly Gram-ve co-colonisers. This is a significant benefit when attempting to detect and isolate fungi from the sputum of CF patients, as it largely suppressed any bacterial growth, with the exception of the BCC organisms, thus allowing for an increased opportunity to detect target fungal organisms in sputum and represented a significant improvement over the commercial medium (SDA), which is currently used. Overall, both novel selective media were superior in their ability to suppress bacteria in comparison with the commercially available SDA medium, which is routinely employed in most clinical microbiology diagnostic laboratories presently. Alternatively, Medium B+ had a great ability to grow fungi than SDA(+) and when employed together, the specificity of combined use was 82%, with a sensitivity for yeasts, filamentous fungi, and combined overall fungi of 96.0%, 92.3% and 96.0%, respectively. Overall, when employing one fungal selective medium for the routine detection of yeasts and filamentous fungi in the sputum of CF patients, we would recommend employment of Medium B+. However, we would recommend the combined employment of SDA(+) and Medium B+, in order to synergistically isolate and detect the greatest number of fungi present in CF sputa. (C) 2008 European Cystic Fibrosis Society. Published by Elsevier B.V All rights reserved.
Resumo:
Skin secretions from Australian frogs of the genus Litoria have been extensively studied for many years and are known to contain a large array of antimicrobial peptides that often bear their specific names — caerins (L. caerulea), aureins (L. aurea), citropins (L. citropa) and maculatins (L. genimaculata) — and each group displays distinct primary structural attributes. During a systematic transcriptome cloning study using a cDNA library derived from skin secretion of L. aurea, a series of identical clones were identified that encoded a novel 25-mer antimicrobial peptide that displayed 92% structural identity with caerin 1.12 from L. caerulea, differing in amino acid sequence at only two positions — Arg for Gly at position 7 and Leu amide for Ser amide at the C-terminus. The novel peptide had conserved Pro residues at positions 15 and 19 that flank a flexible hinge region which previous studies have suggested are important for effective orientation of the two alpha-helices within the bacterial membrane resulting in lysis of cells. As the two substitutions in the novel peptide serve to increase both positive charge and hydrophobicity, we synthesised a replicate and determined its minimal inhibitory concentration (MIC) against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The MICs for these organisms were 3 µM and 4 µM, respectively, indicating a high potency and haemolysis was
Resumo:
Quinoline derivatives are known to possess a range of bioactive and medicinal activities, which have been exploited in the design of antibacterial, antifungal and antimalarial compounds. In this study, we report on the microbiological toxicity of a series of 1-alkylquinolinium bromides against a range of clinically relevant microorganisms, in both planktonic and sessile (biofilm) cultures. A comparison of antimicrobial activity against planktonic bacteria and established biofilms is presented. In general, 1-alkylquinolinium ionic liquids possess excellent, broad spectrum antimicrobial activity against microorganisms grown in both the planktonic and sessile, or biofilm, mode of growth. Importantly, these compounds are potent against Gram positive and Gram negative bacteria, as well as fungi, with a clear dependency on length of the alkyl substituent for activity, with compounds containing twelve and fourteen carbons in the alkyl group exhibiting highest antimicrobial and antibiofilm activity. © 2010 The Royal Society of Chemistry.
Resumo:
Propionibacterium acnes is an anaerobic Gram-positive bacterium that forms part of the normal human cutaneous microbiota and is thought to play a central role in acne vulgaris, a chronic inflammatory disease of the pilosebaceous unit (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). Here we present the whole genome sequence of P. acnes type IB strain 6609, which was recovered from a skin sample from a woman with no recorded acne history and is thus considered a nonpathogenic strain (I. Nagy, Microbes Infect. 8:2195-2205, 2006).
Resumo:
Propionibacterium acnes, a non-spore-forming, anaerobic Gram-positive bacterium, is most notably recognized for its association with acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821–832, 2009). We now present the draft genome sequence of an antibiotic-resistantP. acnesstrain, PRP-38, isolated from an acne patient in the United Kingdom and belonging to the novel type IC cluster. Copyright © 2012, American Society for Microbiology. All Rights Reserved.
Resumo:
The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1,3-dichloropropene, could utilize low concentrations of 1,3-dichloropropene as a sole carbon and energy source, Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different dehalogenases: a hydrolytic haloalkane dehalogenase specific for haloalkanes and two 3-chloroacrylic acid dehalogenases, one specific for cis-3-chloroacrylic acid and the other specific for trans-3-chloroacrylic acid. The haloalkane dehalogenase and the trans-3-chloroacrylic acid dehalogenase were expressed constitutively, whereas the cis-3-chloroacrylic acid dehalogenase was inducible, The presence of these enzymes indicates that 1,3-dichloropropene is hydrolyzed to 3-chloroallyl alcohol, which is oxidized in two steps to 3-chloroacrylic acid. The latter compound is then dehalogenated, probably forming malonic acid semialdehyde. The haloalkane dehalogenase gene, which is involved in the conversion of 1,3-dichloropropene to 3-chloroallyl alcohol, was cloned and sequenced, and this gene turned out to be identical to the previously studied dhaA gene of the gram-positive bacterium Rhodococcus rhodochrous NCIMB13063, Mutants resistant to the suicide substrate 1,2-dibromoethane lacked haloalkane dehalogenase activity and therefore could not utilize haloalkanes for growth. PCR analysis showed that these mutants had lost at least part of the dhaA gene.
Resumo:
The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.
Resumo:
Propionibacterium acnes is an anaerobic Gram-positive bacterium that has been linked to a wide range of opportunistic human infections and conditions, most notably acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). We now present the whole-genome sequences of three P. acnes strains from the type IA(2) cluster which were recovered from ophthalmic infections (A. McDowell et al., Microbiology 157:1990-2003, 2011).
Resumo:
The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu?Pro at position 2 and Phe?Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20µM and 150µM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His?Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5µM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His?Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40µm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.
Resumo:
The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two ‘putative virulence’ genes (eMLST) that provides improved high resolution
typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA1 clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA2 strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA1 and IA2 strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.
Resumo:
Natural drug discovery represents an area of research with vast potential. The investigation into the use of naturally-occurring peptides as potential therapeutic agents provides a new “chemical space” for the procurement of drug leads. Intensive and systematic studies on the broad-spectrum antimicrobial peptides found in amphibian skin secretions are of particular interest in the quest for new antibiotics to treat multiple drug-resistant bacterial infections. Here we report the molecular cloning of the biosynthetic precursor-encoding cDNAs and respective mature peptides representing a novel group of antimicrobial peptides from the skin secretions of representative species of phyllomedusine leaf frogs: the Central American red-eyed leaf frog (Agalychnis callidryas), the South American orange-legged leaf frog (Phyllomedusa hypochondrialis) and the Giant Mexican leaf frog, (Pachymedusa dacnicolor). Each novel peptide possessed the highly-conserved sequence, LGMIPL/VAISAISA/SLSKLamide, and each exhibited activity against the Gram-positive bacterium, Staphylococcus aureus and the yeast, Candida albicans, but all were devoid of haemolytic effects at concentrations up to and including the MICs for both organisms. The novel peptide group were named medusins, derived from the name of the hylid frog sub-family, Phyllomedusinae, to which all species investigated belong. These data clearly demonstrate that comparative studies of the skin secretions of phyllomedusine frogs can continue to produce novel peptides that have the potential to be leads in the development of new and effective antimicrobials.
Resumo:
The IQ-motif is an amphipathic, often positively charged, a-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic a-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.
Resumo:
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.
Resumo:
Respiratory infections caused by Klebsiella pneumoniae are characterized by high rates of mortality and morbidity. Management of these infections is often difficult, due to the high frequency of strains that are resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. In the present study, we investigated the role of the K. pneumoniae AcrRAB operon in antimicrobial resistance and virulence by using isogenic knockouts deficient in the AcrB component and the AcrR repressor, both derived from the virulent strain 52145R. We demonstrated that the AcrB knockout was more susceptible, not only to quinolones, but also to other antimicrobial agents, including beta-lactams, than the wild-type strain and the AcrR knockout. We further showed that the AcrB knockout was more susceptible to antimicrobial agents present in human bronchoalveolar lavage fluid and to human antimicrobial peptides than the wild-type strain and the AcrR knockout. Finally, the AcrB knockout exhibited a reduced capacity to cause pneumonia in a murine model, in contrast to the wild-type strain. The results of this study suggest that, in addition to contributing to the multidrug resistance phenotype, the AcrAB efflux pump may represent a novel virulence factor required for K. pneumoniae to resist innate immune defense mechanisms of the lung, thus facilitating the onset of pneumonia.
Resumo:
The multitude of biomolecular and regulatory factors involved in staphylococcal adhesion and biofilm formation owe much to their ability to colonize surfaces, allowing the biofilm form to become the preferential bacterial phenotype. Judging by total number, biomass and variety of environments colonized, bacteria can be categorized as the most successful lifeform on earth. This is due to the ability of bacteria and other microorganisms to respond phenotypically via biomolecular processes to the stresses of their surrounding environment. This review focuses on the specific pathways involved in the adhesion of the Gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus with reference to the role of specific cell surface adhesins, the ica operon, accumulation-associated proteins and quorum-sensing systems and their significance in medical device-related infection.