66 resultados para Genesis of research in Science education
Resumo:
Abstract This study explored the effects that the incorporation of nature of science (NoS) activities in the primary science classroom had on children’s perceptions and understanding of science. We compared children’s ideas in four classes by inviting them to talk, draw and write about what science meant to them: two of the classes were taught by ‘NoS’ teachers who had completed an elective nature of science (NoS) course in the final year of their Bachelor of Education (B.Ed) degree. The ‘non-NoS’ teachers who did not attend this course taught the other two classes. All four teachers had graduated from the same initial teacher education institution with similar teaching grades and all had carried out the same science methods course during their B.Ed programme. We found that children taught by the teachers who had been NoS-trained developed more elaborate notions of nature of science, as might be expected. More importantly, their reflections on science and their science lessons evidenced a more in-depth and sophisticated articulation of the scientific process in terms of scientists “trying their best” and “sometimes getting it wrong” as well as “getting different answers”. Unlike children from non-NoS classes, those who had engaged in and reflected on NoS activities talked about their own science lessons in the sense of ‘doing science’. These children also expressed more positive attitudes about their science lessons than those from non-NoS classes. We therefore suggest that there is added value in including NoS activities in the primary science curriculum in that they seem to help children make sense of science and the scientific process, which could lead to improved attitudes towards school science. We argue that as opposed to considering the relevance of school science only in terms of children’s experience, relevance should include relevance to the world of science, and NoS activities can help children to link school science to science itself.
Resumo:
The use of cooperative learning in secondary school is reported - an area of considerable concern given attempts to make secondary schools more interactive and gain higher recruitment to university science courses. In this study the intervention group was 259 pupils aged 12-14 years in nine secondary schools, taught by 12 self-selected teachers. Comparison pupils came from both intervention and comparison schools (n = 385). Intervention teachers attended three continuing professional development days, in which they received information, engaged with resource packs and involved themselves in cooperative learning. Measures included both general and specific tests of science, attitudes to science, sociometry, self-esteem, attitudes to cooperative learning and transferable skills (all for pupils) and observation of implementation fidelity. There were increases during cooperative learning in pupil formulation of propositions, explanations and disagreements. Intervened pupils gained in attainment, but comparison pupils gained even more. Pupils who had experienced cooperative learning in primary school had higher pre-test scores in secondary education irrespective of being in the intervention or comparison group. On sociometry, comparison pupils showed greater affiliation to science work groups for work, but intervention pupils greater affiliation to these groups at break and out of school. Other measures were not significant. The results are discussed in relation to practice and policy implications. © 2011 Taylor & Francis.
Resumo:
This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A total of 23 studies met these criteria. Among studies evaluating inquiry-based teaching approaches, programs that used science kits did not show positive outcomes on science achievement measures (weighted ES=+0.02 in 7 studies), but inquiry-based programs that emphasized professional development but not kits did show positive outcomes (weighted ES=+0.36 in 10 studies). Technological approaches integrating video and computer resources with teaching and cooperative learning showed positive outcomes in a few small, matched studies (ES=+0.42 in 6 studies). The review concludes that science teaching methods focused on enhancing teachers’ classroom instruction throughout the year, such as cooperative learning and science-reading integration, as well as approaches that give teachers technology tools to enhance instruction, have significant potential to improve science learning.
Resumo:
Introduction
Nursing and midwifery students often struggle to engage with bioscience modules because they lack confidence in their ability to study science (Fell et al., 2012). Consequently many have difficulty applying anatomical and physiological information, essential to providing safe and effective patient care (Rogers, 2014; Rogers and Sterling, 2012); therefore a need exists for nurse educators to explore different methods of delivery of these important topics to enhance current curricula (Johnston, 2010). Inspired by the reported success of creative methods to enhance the teaching and learning of anatomy in medical education (Noel, 2013; Finn and McLachlan, 2010), this pilot study engaged nursing students in anatomy through the art of felt. The project was underpinned by the principles of good practice in undergraduate education, staff-student engagement, cooperation among students, active learning, prompt feedback, time on task, high expectations and respect for diverse learning styles (Chickering and Gamson, 1987).
Method
Undergraduate student nurses from Queen’s University, Belfast, enrolled in the year one ‘Health and Wellbeing’ model were invited to participate in the project. Over a six week period the student volunteers worked in partnership with teaching staff to construct individual, unique, three dimensional felt models of the upper body. Students researched the agreed topic for each week in terms of anatomical structure, location, tissue composition and vascular access. Creativity was encouraged in relation to the colour and texture of materials used. The evaluation of the project was based on the four level model detailed by Kirkpatrick and Kirkpatrick (2006) and included both quantitative and qualitative analysis:• pre and post knowledge scores• self-rated confidence• student reflections on the application of learning to practice.
Results
At the end of the project students had created felt pieces reflective of their learning throughout the project and ‘memorable’ three dimensional mental maps of the human anatomy. Evaluation revealed not only acquisition of anatomical knowledge, but the wider benefits of actively engaging in creative learning with other students and faculty teaching staff.
The project has enabled nurse educators to assess the impact of innovative methods for delivery of these important topics.
Resumo:
A vast body of research in breast cancer prognostication has accumulated. Yet despite this, patients within current prognostic categories may have significantly different outcomes. There is a need to more accurately divide those cancer types associated with an excellent prognosis from those requiring more aggressive therapy. Gene expression array studies have revealed the numerous molecular breast cancer subtypes that are associated with differing outcomes. Furthermore, as next generation technologies evolve and further reveal the complexities of breast cancer, it is likely that existing prognostic approaches will become progressively refined. Future prognostication in breast cancer requires a morphomolecular, multifaceted approach involving the assessment of anatomical disease extent and levels of protein, DNA and RNA expression. One of the major challenges in prognostication will be the integration of potential assays into existing clinical systems and identification of appropriate patient subgroups for analysis.
Resumo:
Blending Art and Science in Nurse Education: The Benefits and Impact of Creative Partnerships
This paper presents the benefits of an innovative education partnership between lecturers from the School of Nursing and Midwifery, Queens University Belfast and Arts Care, a unique Arts and Health Charity in Northern Ireland, to engage nursing students in life sciences
Nursing and Midwifery students often struggle to engage with life science modules because they lack confidence in their ability to study science.This project was funded by a Teaching Innovation Award from the School of Nursing and Midwifery, Queens University Belfast, to explore creative ways of engaging year one undergraduate nursing students in learning anatomy and physiology. The project was facilitated through collaboration between Teaching staff from the School of Nursing and Midwifery and Arts Care, Northern Ireland. This unique Arts and Health Charity believes in the benefits of creativity to well being.
RESEARCH OBJECTIVE(S)
To explore creative ways of engaging year one undergraduate nursing students in learning anatomy and physiology.
METHODS AND METHODLOGY
Students participated in a series of workshops designed to explore the cells, tissues and organs of the human body through the medium of felt. Facilitated by an Arts Care artist, and following self-directed preparation, students discussed and translated their learning of the cells, tissues and organs of the human body into striking felt images. During the project students kept a reflective journal of their experience to document how participation in the project enhanced their learning and professional development
RESULTS
Creativity transformed and brought to life the students learning of the cells, tissues and organs of the human body.
The project culminated in the exhibition of a unique body of artwork which has been exhibited across Northern Ireland in hospitals and galleries and viewed by fellow students, teaching staff, nurses from practice, artists, friends, family and members of the public.
CONCLUSION
The impact of creativity learning strategies in nurse education should be further explored.
REFERENCES
Bennett, M and Rogers, K.MA. (2014) First impressions matter: an active, innovative and engaging method to recruit student volunteers for a pedagogic project. Reflections, Available online at: QUB, Centre for Educational Development / Publications / Reflections Newsletter, Issue 18, June 2014.
Chickering,A.W. and Gamson,Z.F. (1987) Seven principles for good practice in undergraduate education The American Association for Higher Education Bulletin, March. http://www.aahea.org/aahea/articles/sevenprinciples1987.htm, accessed 8th August 2014
Fell, P., Borland, G., Lynne, V. (2012) Lab versus lectures: can lab based practical sessions improve nursing students’ learning of bioscience? Health and Social Care Education 3:1, 33-38
Resumo:
The growing visibility of various forms of creationism in Northern Ireland raises issues for science education. Attempts have been made at political levels to have such “alternatives” to evolution taught in the science classroom, and the issue has received coverage in local press and media. A sample of 112 pre-service science teachers answered a survey on attitudes toward evolution. Preliminary analysis revealed many of these new teachers held views contrary to scientific consensus—over one fifth doubt the evidence for human evolution, and over one quarter dispute the common ancestry of life. Over two thirds indicated a preference for teaching a “range of theories” regarding these issues in science. In addition, 49 pre-service biology teachers viewed a DVD resource promoting “intelligent design” and completed an evaluation of it. The biology teachers also took part in either focus groups or additional questionnaires. A majority took the resource at face value and made positive comments regarding its utility. Many articulated views contrary to the stated positions of science academies, professional associations, and the UK government teaching directives regarding creationism. Most indicated a perception that intelligent design is legitimate science and that there is a scientific “controversy” regarding the legitimacy of evolution. Concern is raised over the ability of these new teachers to distinguish between scientific and non-scientific theories. The suggestion is made that the issue should be addressed directly with pre-service science teachers to make clear the status of such “alternatives.” The paper raises implications for science education and questions for further research.