25 resultados para Generalized linear model
Resumo:
Objective: To test the hypothesis that the self-perception of dental and facial attractiveness among patients requiring orthognathic surgery is no different from that of control patients.
Materials and Methods: Happiness with dental and facial appearance was assessed using questionnaires completed by 162 patients who required orthognathic treatment and 157 control subjects. Visual analog scale, binary, and open response data were collected. Analysis was carried out using a general linear model, logistic regression, and chi-square tests.
Results: Orthognathic patients were less happy with their dental appearance than were controls. Class II patients and women had lower happiness scores for their dental appearance. Among orthognathic patients, the "shape" and "prominence" of their teeth were the most frequent causes of concern. Older subjects, women, and orthognathic patients were less happy with their facial appearance. Class III orthognathic patients, older subjects, and women were more likely to have looked at their own face in profile. A greater proportion of Class II subjects than Class III subjects wished to change their appearance.
Conclusions: The hypothesis is rejected. The findings indicate that women and patients requiring orthognathic surgery had lower levels of happiness with their dentofacial appearance. Although Class II patients exhibited the lowest levels of happiness with their dental appearance, there was some evidence that concerns and awareness about their facial profile were more pronounced among the Class III patients.
Resumo:
Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.
Resumo:
We report the largest market basket survey of arsenic (As) in U.S. rice to date. Our findings show differences in transitional-metal levels between polished and unpolished rice and geographical variation in As and selenium (Se) between rice processed in California and the South Central U.S. The mean and median As grain levels for the South Central U.S. were 0.30 and 0.27 µg As g-1, respectively, for 107 samples. Levels for California were 41% lower than the South Central U.S., with a mean of 0.17 µg As g-1 and a median of 0.16 µg As g-1 for 27 samples. The mean and median Se grain levels for the South Central U.S. were 0.19 µg Se g-1. Californian rice levels were lower, averaging only 0.08 and 0.06 µg Se g-1 for mean and median values, respectively. The difference between the two regions was found to be significant for As and Se (General Linear Model (GLM):? As p < 0.001; Se p < 0.001). No statistically significant differences were observed in As or Se levels between polished and unpolished rice (GLM:? As p = 0.213; Se p = 0.113). No significant differences in grain levels of manganese (Mn), cobalt (Co), copper (Cu), or zinc (Zn) were observed between California and the South Central U.S. Modeling arsenic intake for the U.S. population based on this survey shows that for certain groups (namely Hispanics, Asians, sufferers of Celiac disease, and infants) dietary exposure to inorganic As from elevated levels in rice potentially exceeds the maximum intake of As from drinking water (based on consumption of 1 L of 0.01 mg L-1 In. As) and Californian state exposure limits. Further studies on the transformation of As in soil, grain As bioavailability in the human gastrointestinal tract, and grain elemental speciation trends are critical.
Resumo:
PURPOSE: To determine and compare the corneal biomechanical properties between eyes with primary open angle glaucoma (POAG) and eyes with normal tension glaucoma (NTG). PATIENTS AND METHODS: Prospective cross-sectional study. Consecutive eligible POAG and NTG patients attending the Glaucoma Clinic had assessment of their corneal biomechanical properties-corneal hysteresis (CH) and corneal resistance factor (CRF)-using the Ocular Response Analyzer by an observer masked to the diagnosis. Exclusion criteria included previous intraocular surgery, corneal pathology, inflammatory connective tissue disease, and refraction of 5-dimensional or over. If both eyes were eligible, then the right eye was used for analysis. The main outcome measures were corneal hysteresis and CRF measurements. Data analysis was performed using the t test and general linear model. RESULTS: Eighty-one patients (80 whites) were analyzed. Forty had NTG, whereas 41 had POAG. Thirty-five were females. There was a statistically significant difference in mean CH (NTG 9.6±1.3 mm Hg; POAG 9.0±1.4 mm Hg; P=0.01), but not in mean CRF (NTG 9.9±1.4; POAG 10.8±1.7; P=0.06). The highest recorded Goldmann applanation intraocular pressure (IOP) was statistically significantly associated with lower CH (P=0.01) and higher CRF (P=0.02). CONCLUSIONS: There was a small but statistically significant difference in the mean CH between POAG and NTG (CH was higher in NTG). The highest recorded Goldmann applanation IOP was also statistically significantly correlated with lower CH and higher CRF, suggesting that alterations to the corneal biomechanical properties may occur as a result of chronic raised IOP in POAG. © 2008 by Lippincott Williams & Wilkins.
Resumo:
Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non-linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass-metabolism allometric exponent b = 0.75, activation energy range 0.2-1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best-supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 +/- 0.105 (mean +/- 95% CI). In contrast, the four best-supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non-linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.
Resumo:
This paper introduces an algorithm that calculates the dominant eigenvalues (in terms of system stability) of a linear model and neglects the exact computation of the non-dominant eigenvalues. The method estimates all of the eigenvalues using wavelet based compression techniques. These estimates are used to find a suitable invariant subspace such that projection by this subspace will provide one containing the eigenvalues of interest. The proposed algorithm is exemplified by application to a power system model.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
Objective: to explore maternal energy balance, incorporating free living physical activity and sedentary behaviour, in uncomplicated pregnancies at risk of macrosomia.
Methods: a parallel-group cross-sectional analysis was conducted in healthy pregnant women predicted to deliver infants weighing Z4000 g (study group) or o4000 g (control group). Women were recruited in a 1:1 ratio from antenatal clinics in Northern Ireland. Women wore a SenseWears Body Media Pro3 physical activity armband and completed a food diary for four consecutive days in the third trimester. Physical activity was measured in Metabolic Equivalent of Tasks (METs) where 1 MET¼1 kcal per kilogram of body weight per hour. Analysis of covariance (ANCOVA) was employed using the General Linear Model to adjust for potential confounders.
Findings: of the 112 women recruited, 100 complete datasets were available for analysis. There was no significant difference in energy balance between the two groups. Intensity of free living physical activity (average METs) of women predicted to deliver macrosomic infants (n¼50) was significantly lower than that of women in the control group (n¼50) (1.3 (0.2) METs (mean, standard deviation) versus 1.2 (0.2) METs; difference in means 0.1 METs (95% confidence interval: 0.19, 0.01); p¼0.021). Women predicted to deliver macrosomic infants also spent significantly more time in sedentary behaviour (r1 MET) than the control group (16.1 (2.8) hours versus 13.8 (4.3) hours; 2.0 hours (0.3, 3.7), p¼0.020).
Key conclusions and implications for practice: although there was no association between predicted fetal macrosomia and energy balance, those women predicted to deliver a macrosomic infant exhibited increased sedentary behaviour and reduced physical activity in the third trimester of pregnancy. Professionals caring for women during pregnancy have an important role in promoting and supporting more active lifestyles amongst women who are predicted to deliver a macrosomic infant given the known associated risks.
Resumo:
Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.
Resumo:
The study of ecological differences among coexisting microparasites has been largely neglected, but it addresses important and unusual issues because there is no clear distinction in such cases between conventional (resource) and apparent competition. Here patterns in the population dynamics are examined for four species of Bartonella (bacterial parasites) coexisting in two wild rodent hosts, bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus). Using generalized linear modeling and mixed effects models, we examine, for these four species, seasonal patterns and dependencies on host density (both direct and delayed) and, having accounted for these, any differences in prevalence between the two hosts. Whereas previous studies had failed to uncover species differences, here all four were different. Two, B. doshiae and B. taylorii, were more prevalent in wood mice, and one, B. birtlesii, was more prevalent in bank voles. B. birtlesii, B. grahamii, and B. taylorii peaked in prevalence in the fall, whereas B. doshiae peaked in spring. For B. birtlesii in bank voles, density dependence was direct, but for B. taylorii in wood mice density dependence was delayed. B. birtlesii prevalence in wood mice was related to bank vole density. The implications of these differences for species coexistence are discussed.