62 resultados para Gaussian Schell-model beam


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A beam splitter is a simple, readily available device which can act to entangle output optical fields. We show that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input states exhibit nonclassical behavior. We generalize this proof for arbitrary (pure or impure) Gaussian input states. Specifically, nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the field modes with the help of a beam splitter. We conjecture that this is a general property of beam splitters: Nonclassicality of the inputs is a necessary condition for entangling fields in a beam splitter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper exposes the strengths and weaknesses of the recently proposed velocity-based local model (LM) network. The global dynamics of the velocity-based blended representation are directly related to the dynamics of the underlying local models, an important property in the design of local controller networks. Furthermore, the sub-models are continuous-time and linear providing continuity with established linear theory and methods. This is not true for the conventional LM framework, where the global dynamics are only weakly related to the affine sub-models. In this paper, a velocity-based multiple model network is identified for a highly nonlinear dynamical system. The results show excellent dynamical modelling performances, highlighting the value of the velocity-based approach for the design and analysis of LM based control. Three important practical issues are also addressed. These relate to the blending of the velocity-based local models, the use of normalised Gaussian basis functions and the requirement of an input derivative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard linear-quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extension of the bootstrap filter to the multiple model target tracking problem is considered. Bayesian bootstrap filtering is a very powerful technique since it represents samples by random samples and is therefore not restricted to linear, Gaussian systems, making it ideal for the multiple model problem where very complex densities fan be generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of a Gaussian electromagnetic beam along the direction of magnetic field in a plasma is investigated. The extraordinary (E-x+iE(y)) mode is explicitly considered in the analysis, although the results for the ordinary mode can be obtained upon replacing the electron cyclotron frequency omega(c) by -omega(c). The propagating beam electric field is coupled to the surrounding plasma via the dielectric tensor, taking into account the existence of a stationary magnetic field. Both collisionless and collisional cases are considered, separately. Adopting an established methodological framework for beam propagation in unmagnetized plasmas, we extend to magnetized plasmas by considering the beam profile for points below the critical curve in the beam-power versus beam-width plane, and by employing a relationship among electron concentration and electron temperature, provided by kinetic theory (rather than phenomenology). It is shown that, for points lying above the critical curve in the beam-power versus beam-width plane, the beam experiences oscillatory convergence (self-focusing), while for points between the critical curve and divider curve, the beam undergoes oscillatory divergence and for points on and below the divider curve the beam suffers a steady divergence. For typical values of parameters, numerical results are presented and discussed. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer code has been developed to simulate and study the evolution of ion charge states inside the trap region of an electron beam ion trap. In addition to atomic physics phenomena previously included in similar codes such as electron impact ionization, radiative recombination, and charge exchange, several aspects of the relevant physics such as dielectronic recombination, ionization heating, and ion cloud expansion have been included for the first time in the model. The code was developed using object oriented concepts with database support, making it readable, accurate, and well organized. The simulation results show a good agreement with various experiments, and give useful information for selection of operating conditions and experiment design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we use a zero-range potential (ZRP) method to model positron interaction with molecules. This allows us to investigate the e?ect of molecular vibrations on positron–molecule annihilation using the van der Waals dimer Kr2 as an example. We also use the ZRP to explore positron binding to polyatomics and examine the dependence of the binding energy on the size of the molecule for alkanes. We ?nd that a second bound state appears for a molecule with ten carbons, similar to recent experimental evidence for such a state emerging in alkanes with twelve carbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cold trap-based positron beams and new scattering techniques has recently enabled the ?rst measurements of state-resolved positron-impact vibrational excitation cross sections. These measurements revealed a number of features worth further consideration, such as relatively sharp increases near threshold. This paper describes a comparison of the magnitudes and shapes of these cross sections with the predictions of the Born-dipole model. Agreement of the magnitudes of the cross sections varies widely, ranging from reasonable to excellent agreement for CO2 and CF4 to poor agreement for CO and CH4. In contrast, the energy dependence of these cross sections in all these cases is close to that predicted by the Born model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stochastic nature of oil price fluctuations is investigated over a twelve-year period, borrowing feedback from an existing database (USA Energy Information Administration database, available online). We evaluate the scaling exponents of the fluctuations by employing different statistical analysis methods, namely rescaled range analysis (R/S), scale windowed variance analysis (SWV) and the generalized Hurst exponent (GH) method. Relying on the scaling exponents obtained, we apply a rescaling procedure to investigate the complex characteristics of the probability density functions (PDFs) dominating oil price fluctuations. It is found that PDFs exhibit scale invariance, and in fact collapse onto a single curve when increments are measured over microscales (typically less than 30 days). The time evolution of the distributions is well fitted by a Levy-type stable distribution. The relevance of a Levy distribution is made plausible by a simple model of nonlinear transfer. Our results also exhibit a degree of multifractality as the PDFs change and converge toward to a Gaussian distribution at the macroscales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.