76 resultados para Galaxies : Halos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tribe Gymnothamnieae Kajimura was proposed for the monotypic ceramiacean genus Gymnothamnion J. Agardh, previously placed either in the Ptiloteae Cramer or the Antithamnieae Hommersand. A bisporangial isolate of G. elegans (Schousboe ex C. Agardh) J. Agardh from Morocco formed only bisporangia in culture. Its smaller uninucleate cells and sporangia than those of tetrasporophytes suggested that bisporophytes may be haploid as in another member of the Ceramiaceae, Aglaothamnion diaphanum L'Hardy-Halos et Maggs. Phylogenetic analyses of the gene for the large subunit of rubisco (rbcL) from Gymnothamnion and representatives of eight other tribes of the Ceramiaceae confirmed that the removal of Gymnothamnion from the Ptiloteae and the Antithamnieae was warranted. Whereas all tribes with two or more representatives in our analyses were moderately or robustly resolved, Gymnothamnion did not form a strong clade with any other taxa. Analysis of rbcL sequences failed to resolve relationships between tribes, probably due to saturation at the high levels of sequence divergence found. In addition to reproductive features previously reported and interpreted as primitive, G. elegans shows a primitive vegetative feature and it is suggested that Gymnothamnion may be one of the most basal of the taxa presently included in the Ceramiaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the matter in the universe is in the few form of a plasma. Over the past years physicists have produced laboratory plasmas that can mimic those observed in astrophysics. The best known is probably the tokamak, which has similar physical conditions and plasma processes to those found in collisionally dominated solar and stellar transition regions and coronae. Spectroscopy of such laboratory plasmas, in, particular at, ultraviolet and X-ray wavelengths, has greatly aided our understanding of their astrophysical counterparts. More recently, experiments have been performed on the Z Machine at the Sandia National Laboratory in the USA with the aim of creating, for the first time, steady-state photoionization-dominated plasmas that recreate the conditions found in some accretion-powered X-ray sources, such as X-ray binaries. In the future, experiments are envisaged with laser-produced plasmas at AWE Aldermaston that may be able to mimic the steady-state conditions found in high-energy accretion-powered sources, including the central regions of active galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present mid-infrared (MIR) observations of the Type II-plateau supernova (SN) 2004et, obtained with the Spitzer Space Telescope between 64 and 1406 days past explosion. Late-time optical spectra are also presented. For the period 300-795 days past explosion, we argue that the spectral energy distribution (SED) of SN 2004et comprises (1) a hot component due to emission from optically thick gas, as well as free-bound radiation; (2) a warm component due to newly formed, radioactively heated dust in the ejecta; and (3) a cold component due to an IR echo from the interstellar-medium dust of the host galaxy, NGC 6946. There may also have been a small contribution to the IR SED due to free-free emission from ionized gas in the ejecta. We reveal the first-ever spectroscopic evidence for silicate dust formed in the ejecta of a supernova. This is supported by our detection of a large, but progressively declining, mass of SiO. However, we conclude that the mass of directly detected ejecta dust grew to no more than a few times 10(-4) M-circle dot. We also provide evidence that the ejecta dust formed in comoving clumps of fixed size. We argue that, after about two years past explosion, the appearance of wide, box-shaped optical line profiles was due to the impact of the ejecta on the progenitor circumstellar medium and that the subsequent formation of a cool, dense shell was responsible for a later rise in the MIR flux. This study demonstrates the rich, multifaceted ways in which a typical core-collapse supernova and its progenitor can produce and/or interact with dust grains. The work presented here adds to the growing number of studies that do not support the contention that SNe are responsible for the large mass of observed dust in high-redshift galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effects of varying the cosmic ray ionization rate in chemical models of dense interstellar clouds. In the absence of such ionization, a scenario which may be applicable to dark cloud cores, we find that chemi-ionization is able to drive a limited ion-neutral chemistry. Models of clouds in starburst galaxies, which may have enhanced cosmic ray fluxes, are also investigated and enable an upper limit to be derived for the cosmic ray ionization rate in M82. The derived value, which is about 700 times the typical value for Galactic molecular clouds, is in good agreement with that necessary to explain the recent observations of C I in this galaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Such events are predicted to be relatively common in the early Universe during the first episodes of star-formation. To understand these distant explosions it is vital to study nearby CCSNe arising in low-metallicity environments to determine if the explosions have different characteristics to those studied locally in high-metallicity galaxies. Many of the nearby supernova searches concentrate their efforts on high star-formation rate galaxies, hence biasing the discoveries to metal rich regimes. Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of similar to2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances are determined from several lines of two ionization states in both stars resulting in [Mg/Fe] = - 0.24 +/- 0.16 (+/- 0.28). This result suggests that the [alpha(Mg)/Fe] ratio in WLM may be suppressed relative to solar abundances ( also supported by differential abundances relative to similar stars in NGC 6822 and the Small Magellanic Cloud [SMC]). The absolute Mg abundance, [Mg/H] = -0.62, is high relative to what is expected from the nebulae though, where two independent spectroscopic analyses of the H II regions in WLM yield [O/H] = - 0.89. Intriguingly, the oxygen abundance determined from the O I lambda6158 feature in one WLM star is [O/H] = - 0.21 +/- 0.10 (+/- 0.05), corresponding to 5 times higher than the nebular oxygen abundance. This is the first time that a significant difference between stellar and nebular oxygen abundances has been found, and currently, there is no simple explanation for this difference. The two stars are massive supergiants with distances that clearly place them in WLM. They are young ( less than or equal to 10 Myr) and should have a similar composition to the ISM. Additionally, differential abundances suggest that the O/Fe ratio in the WLM star is consistent with similar stars in NGC 6822 and the SMC, galaxies where the average stellar oxygen abundances are in excellent agreement with the nebular results. If the stellar abundances reflect the true composition of WLM, then this galaxy lies well above the metallicity-luminosity relationship for dwarf irregular galaxies. It also suggests that WLM is more chemically evolved than currently interpreted from its color-magnitude diagram. The similarities between the stars in WLM and NGC 6822 suggest that these two galaxies may have had similar star formation histories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have obtained the first high-resolution spectra of individual stars in the dwarf irregular galaxy NGC 6822. The spectra of the two A-type supergiants were obtained at the Very Large Telescope and Keck Observatories, using the Ultraviolet-Visual Echelle Spectrograph and the High Resolution Echelle Spectrometer, respectively. A detailed model atmospheres analysis has been used to determine their atmospheric parameters and elemental abundances. The mean iron abundance from these two stars is [[Fe/H]] = -0.49 +/- 0.22 (+/- 0.21),(6) with Cr yielding a similar underabundance, [[Cr/H]] = -0.50 +/- 0.20 (+/- 0.16). This confirms that NGC 6822 has a metallicity that is slightly higher than that of the SMC and is the first determination of the present-day iron group abundances in NGC 6822. The mean stellar oxygen abundance, 12 + log (O/H) = 8.36 +/- 0.19 (+/- 0.21), is in good agreement with the nebular oxygen results. Oxygen has the same underabundance as iron, [[O/ Fe]] = + 0.02 +/- 0.20 (+/- 0.21). This O/Fe ratio is very similar to that seen in the Magellanic Clouds, which supports the picture that chemical evolution occurs more slowly in these lower mass galaxies, although the O/Fe ratio is also consistent with that observed in comparatively metal-poor stars in the Galactic disk. Combining all of the available abundance observations for NGC 6822 shows that there is no trend in abundance with galactocentric distance. However, a subset of the highest quality data is consistent with a radial abundance gradient. More high-quality stellar and nebular observations are needed to confirm this intriguing possibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Half hour exposures using the ESO VLT/FORS1 combination at Paranal in Chile have allowed us to obtain spectra for three B supergiants in the dwarf irregular galaxy NGC 6822. The spectra have been analysed using non-LTE techniques and temperatures, gravities, helium content and abundances have been obtained. Overall the metallicity of NGC 6822 is found to lie between that of the LMC and of the SMC, in agreement with previous observations of H II regions and in contrast to the earlier findings of Massey et al. (1995). The analysis of H-alpha yields estimates of the mass-loss rates and wind momenta. These results demonstrate that significantly longer exposures with the same instruments will allow us to perform quantitative spectroscopy of blue supergiants in galaxies far beyond the Local Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diminutive species of Aglaothamnion (Ceramiaceae, Rhodophyta), A. diaphanum sp. nov., is described from Brittany (Atlantic France), the Isles of Scilly (off S.W. England) and western Ireland. Aglaothamnion diaphanum is confined to the sublittoral zone, where it grows almost exclusively on algae and sessile animals attached to hard substrata. Thalli are delicate, and branched distichously in one plane. The main axes are ecorticate but may form loose non-corticating rhizoidal filaments. The lateral branches bear a characteristic, regularly alternate distichous series of branchlets, the first of which is always adaxial. All vegetative cells are uninucleate. The majority of field-collected plants bear only bisporangia, but a few bisporangial plants also form spermatangia; some male plants and a single female specimen have been collected. The spermatangial branchlets consist of 3-5 spermatangial mother cells each bearing 2-4 spermatangia, which are constricted around a central nucleus. None of the U-shaped carpogonial branches showed any sign of fertilization, and the gametangia appear to be non-functional. The bisporangia are ovoid and contain two uninucleate spores separated by an oblique curved wall. The occurrence of bisporangia and the lack of adherent cortication distinguish A. diaphanum from two similar species, Aglaothamnion bipinnatum (P. Crouan et H. Crouan) Feldmann-Mazoyer and Aglaothamnion decompositum (J. Agardh) Halos. The life history in culture of French and Irish isolates of A. diaphanum consists of a series of bisporangial generations, a single plant of which also formed spermatangia. Apical cells of bisporophytes are haploid (n = c. 32), but the first division of meiosis, with chromosome pairing and crossing over, occurs in dividing bisporocytes. The germinating bispores are haploid. Endodiploidization may occur in the early stages of sporangium development, as in some phycomycete fungi, or in vegetative cells that subsequently give rise to bisporocytes. This is the first demonstration in the red algae of meiotic bisporangia on plants of which the apical cells, at least, are haploid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have modeled a small sample of Seyfert galaxies that were previously identified as having simple X-ray spectra with little intrinsic absorption. The sources in this sample all contain moderately broad components of FeK-shell emission and are ideal candidates for testing the applicability of a Compton-thick accretion disk wind model to active galactic nucleus (AGN) emission components. Viewing angles through the wind allow the observer to see the absorption signature of the gas, whereas face-on viewing angles allow the observer to see the scattered light from the wind. We find that the FeK emission line profiles are well described with a model of a Compton-thick accretion disk wind of solar abundances, arising tens to hundreds of gravitational radii from the central black hole. Further, the fits require a neutral component of FeKa emission that is too narrow to arise from the inner part of the wind, and likely comes from a more distant reprocessing region. Our study demonstrates that a Compton-thick wind can have a profound effect on the observed X-ray spectrum of an AGN, even when the system is not viewed through the flow. © 2012. The American Astronomical Society. All rights reserved..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly ionized fast accretion disc winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of active galactic nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here, we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disc wind models than that was possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now able to compute spectra for outflows containing far more diverse plasma conditions. We present example calculations that illustrate the variety of spectral features predicted by parametrized outflow models and demonstrate their applicability to the interpretation of data by comparison with observations of the bright quasar PG1211+143. We find that the major features in the observed 2-10 keV spectrum of this object can be well reproduced by our spectra, confirming that it likely hosts a massive outflow. © 2010 The Authors. Journal compilation © 2010 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10 gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.