115 resultados para Galactic Cannibalism
Resumo:
The Galactic Centre is the most active and heavily processed region of the Milky Way, so it can be used as a stringent test for the abundance of deuterium (a sensitive indicator of conditions in the first 1,000 seconds in the life of the Universe). As deuterium is destroyed in stellar interiors, chemical evolution models 1 predict that its Galactic Centre abundance relative to hydrogen is D/H = 5 x 10(-12), unless there is a continuous source of deuterium from relatively primordial (low-metallicity) gas. Here we report the detection of deuterium (in the molecule DCN) in a molecular cloud only 10 parsecs from the Galactic Centre. Our data, when combined with a model of molecular abundances, indicate that D/H = (1.7 +/- 0.3) x 10(-6), five orders of magnitude larger than the predictions of evolutionary models with no continuous source of deuterium. The most probable explanation is recent infall of relatively unprocessed metal-poor gas into the Galactic Centre (at the rate inferred by Wakker(2)). Our measured D/H is nine times less than the local interstellar value, and the lowest D/H observed in the Galaxy. We conclude that the observed Galactic Centre deuterium is cosmological, with an abundance reduced by stellar processing and mixing, and that there is no significant Galactic source of deuterium.
Resumo:
Adult animals that cannibalise juvenile conspecifics may gain energy but also risk filial cannibalism, that is, consumption of their own offspring. However, individuals vary in the magnitude of the costs and benefits of cannibalism depending on factors such as their current energy reserves or the probability that they have offspring in the vicinity. They may therefore also vary in the extent to which they participate in cannibalism. This study investigated whether the sex or brooding status of adult amphipods (Gammarus pulex) influenced whether they participated in cannibalism of juveniles. For females carrying embryos within their brood pouch, we also investigated two hypotheses to explain the presence or absence of cannibalistic behaviour by determining whether cannibalism was correlated with factors that might reflect energy demands (body length, brood size), or that might reflect a temporal change in cannibalistic behaviour (corresponding to stage of brood development). All reproductive classes of adults participated in some level of juvenile cannibalism, but females carrying offspring at an advanced stage of development (close to emergence from the brood pouch) consumed significantly fewer juveniles than other groups. Females thus appear to significantly reduce cannibalism of juveniles concurrent with the time when their own eggs are hatching within the brood pouch, prior to the release of their offspring. Because the experiment tested female responses to unfamiliar juveniles, this reflects a temporal change in behaviour rather than a response to phenotypic recognition cues, although additional direct recognition cannot be ruled out. Brooding females with large brood sizes or large body lengths, which might have disproportionately greater energetic demands, were not more likely to cannibalise juveniles. We also noted that juveniles that survived in trials where cannibalism occurred were significantly more likely to be found at the water surface, suggesting a possible adaptation to escape cannibalistic adults. Overall, our results provide evidence that amphipods use indirect temporal cues to avoid filial cannibalism.
Resumo:
High-resolution optical spectra of 57 Galactic B-type supergiant stars have been analysed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-local thermodynamic equilibrium grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However, for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However, a correlation was found with the inferred projected rotational velocities of the main-sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulence and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to subphotospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.
Resumo:
Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.
Resumo:
The POINT-AGAPE collaboration is carrying out a search for gravitational microlensing toward M31 to reveal galactic dark matter in the form of MACHOs (Massive Astrophysical Compact Halo Objects) in the halos of the Milky Way and M31. A high-threshold analysis of 3 years of data yields 6 bright, short- duration microlensing events, which are confronted to a simulation of the observations and the analysis. The observed signal is much larger than expected from self lensing alone and we conclude, at the 95% confidence level, that at least 20% of the halo mass in the direction of M31 must be in the form of MACHOs if their average mass lies in the range 0.5-1 M-circle dot. This lower bound drops to 8% for MACHOs with masses similar to 0.01 M-circle dot. In addition, we discuss a likely binary microlensing candidate with caustic crossing. Its location, some 32' away from the centre of M31, supports our conclusion that we are detecting a MACHO signal in the direction of M31.
Resumo:
We have begun a search for early-type stars towards the galactic centre which are potentially young objects situated within the inner few kiloparsecs of the disk. U and V (or I) band photographic photometry from the UK Schmidt Telescope has been obtained to identify the bluest candidates in nineteen Schmidt fields (centred close to the galactic centre). We have spectroscopically observed these targets for three fields with the FLAIR multi-fibre system to determine their spectral types. In particular; ten early B-type stars have been identified and equivalent width measurements of their Balmer and HeI lines have been used to estimate atmospheric parameters. These early-type objects have magnitudes in the range 11.5 less than or equal to V less than or equal to 16.0, and our best estimates of their distance (given probable highly variable reddening in this direction together with errors in the plate photometry) suggest that some of them originated close to (i.e R-g
Resumo:
As part of a programme to investigate spatial variations in the Galactic chemical composition, we have been searching for normal B-type stars and A-type supergiants near the Galactic center. During this search we have found eleven peculiar stars, and in some cases performed detailed abundance analyses of them which suggest that they may be at a post-AGB evolutionary stage.
Resumo:
Differential carbon abundances (based on the C II doublet at 6580 Angstrom) are presented for eight early type stars, towards the Galactic anti-centre. All the stars have similar atmospheric parameters with effective temperatures in the range 25000-29000 K and surface gravities between log g = 3.9-4.3 dex. The derived photospheric abundances vary by up to 0.6 dex, and with the exception of one star, RLWT-41, the differential abundances are found to be closely correlated with those of nitrogen. This implies that both elements may have been formed by similar mechanisms and that the lack of correlation between the nitrogen and oxygen abundances previously found in this sample is not directly due to CNO-processed core material being mixed to the stellar surface.