218 resultados para Functional


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations of the structure, potential energy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate (BPA-PC) provide the basis for a model describing the ring-opening polymerization of its cyclic oligomers by nucleophilic molecules. Monte Carlo simulations using this model show a strong tendency to polymerize that is increased by increasing density and temperature, and is greater in 3D than in 2D. Entropy in the distribution of inter-particle bonds is the driving force for chain formation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxides and phosphites are often used as additives to stabilize the properties of polymers, including bisphenol A polycarbonate (BPA-PC). We describe density functional (DF) calculations of the reactions of cyclohexene oxide (CHO, cyclohexane epoxide) and phosphites with chain segments of BPA-PC, with the aim of identifying possible reaction paths and energy barriers. The reactions of CHO with the OH-terminated PC chains and with the carbonate group are exothermic, although there is an energy barrier in each case of more than 10 kcal/mol. A comparison of results for different CHO isomers demonstrates the importance of steric effects. The reactions between the same groups of the PC chain and the phosphites 2-[2,4-bis(tert-butyl)phenoxy]-5,5-dimethyl-1,3,2-dioxaphosphorinane] (BPDD) and trimethyl phosphite (TMP), and their phosphonate isomers are characterized by large energy barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bonding in clusters and extended layers of squaric acid molecules has been investigated by density functional computations. Equilibrium geometries, harmonic vibrational frequencies, and energy barriers for proton transfer along hydrogen bonds have been determined using the Car-Parrinello method. The results provide crucial parameters for a first principles modeling of the potential energy surface, and highlight the role of collective modes in the low-energy proton dynamics. The importance of quantum effects in condensed squaric acid systems has been investigated, and shown to be negligible for the lowest-energy collective proton modes. This information provides a quantitative basis for improved atomistic models of the order-disorder and displacive transitions undergone by squaric acid crystals as a function of temperature and pressure. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of density functional (DF) methods has progressed greatly since the first workshop of this series ten years ago. Applications that show both the successes and the limitations can be found in the fields of: (a) the structures of the isomers of atomic clusters. and (b) the structure of organic molecules and polymers, and their reactions with additional molecules. We shall review some of the results and the lessons to be learned from them. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations with simulated annealing have been used to study the reactions of chains of bisphenol A polycarbonate (BPA-PC) with sodium phenoxide (NaOPh), diphenyl carbonate (DPC), and tetraphenylphosphonium phenoxide (PPh4OPh). These calculations extend our work on the reactions of LiOPh, NaOPh, and phenol with the cyclic tetramer of BPA-PC. We study, in particular, chain growth catalyzed by NaOPh and PPh4OH. The energy barriers for reactions with PPh4OPh are somewhat larger than those involving LiOPh and NaOPh, but they are significantly lower than those involving phenol (HOPh), due in part to the collective rearrangement of phenyl groups in the reacting molecules. We discuss in the Appendix the bonds between alkali metal atoms (Na in the present calculations) and other atoms (here oxygen) that are analogous to the more familiar "hydrogen bonds".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.