23 resultados para Fujian Sheng


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional Chinese Medicines (TCMs) derived from animal horns are one of the most important types of Chinese medicine. In the present study, a fast and sensitive analytical method was established for qualitative and quantitative determination of 14 nucleosides and nucleobases in animal horns using hydrophilic interaction ultra-high performance liquid chromatography coupled with triple-quadruple tandem mass spectrometry (HILIC-UPLC-QQQ-MS/MS) in selective reaction monitoring (SRM) mode. The method was optimized and validated, and showed good linearity, precision, repeatability, and accuracy. The method was successfully used to determine contents of the 14 nucleosides and nucleobases in 25 animal horn samples. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed and the 25 samples were thereby divided into two groups, which agreed with taxonomy. The method may enable quick and effective search of substitutes for precious horns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymeric hydrogel containing a photoinduced electron transfer (PET) based probe for Zn(ii) has been formulated into the wells of a 96-well plate. Upon addition of Zn(ii) ions to selected wells, the fluorescence of the gel was observed to increase in a concentration dependent manner in the 0.25-1.75 mM range. The millimolar binding constant observed for this probe is higher than that reported for other Zn(ii) probes in the literature and offers the possibility to determine the concentration of this ion in environments where the Zn(ii) concentration is high. The combination of the multi-well plate set-up with fluorescence detection offers the possibility of high-throughput screening using low sample volumes in a timely manner. To the best of our knowledge, this is the first reported example of a polymeric hydrogel sensor for zinc with capability for use in fluorescence multi-well plate assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unfolded protein response (UPR) is a homeostatic mechanism to maintain endoplasmic reticulum (ER) function. The UPR is activated by various physiological conditions as well as in disease states, such as cancer. As androgens regulate secretion and development of the normal prostate and drive prostate cancer (PCa) growth, they may affect UPR pathways. Here, we show that the canonical UPR pathways are directly and divergently regulated by androgens in PCa cells, through the androgen receptor (AR), which is critical for PCa survival. AR bound to gene regulatory sites and activated the IRE1α branch, but simultaneously inhibited PERK signaling. Inhibition of the IRE1α arm profoundly reduced PCa cell growth in vitro as well as tumor formation in preclinical models of PCa in vivo. Consistently, AR and UPR gene expression were correlated in human PCa, and spliced XBP-1 expression was significantly upregulated in cancer compared with normal prostate. These data establish a genetic switch orchestrated by AR that divergently regulates the UPR pathways and suggest that targeting IRE1α signaling may have therapeutic utility in PCa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of CO2 on copper electrodes has attracted great attentions in the last decades, since it provides a sustainable approach for energy restore. During the CO2 reduction process, the electron transfer to COads is experimentally suggested to be the crucial step. In this work, we examine two possible pathways in CO activation, i.e. to generate COHads and CHOads, respectively, by performing the state-of-the-art constrained ab initio molecular dynamics simulations on the charged Cu(100) electrode under aqueous conditions, which is close to the realistic electrochemical condition. The free energy profile in the formation of COHads via the coupled proton and electron transfer is plotted. Furthermore, by Bader charge analyses, a linear relationship between C-O bond distance and the negative charge in CO fragment is unveiled. The formation of CHOads is identified to be a surface catalytic reaction, which requires the adsorption of H atom on the surface first. By comparing these two pathways, we demonstrate that kinetically the formation of COHads is more favored than that of CHOads, while CHOads is thermodynamically more stable. This work reveals that CO activation via COHads intermediate is an important pathway in electrocatalysis, which could provide some insights into CO2 electroreduction over Cu electrodes.