130 resultados para Frogs, Effect of temperature on
Resumo:
The inclusion of a synthetic fluoromica clay in PET affects its processability via biaxial stretching and stretching temperature (95 °C and 102 °C) and strain rate (1 s-1 and 2 s-1) influence the structuring and properties of the stretched material. The inclusion of clay has little effect on the temperature operating window for the PET–clay but it has a major effect on deformation behaviour which will necessitate the use of much higher forming forces during processing. The strain hardening behaviour of both the filled and unfilled materials is well correlated with tensile strength and tensile modulus. Increasing the stretching temperature to reduce stretching forces has a detrimental effect on clay exfoliation, mechanical and O2 barrier properties. Increasing strain rate has a lesser effect on the strain hardening behaviour of the PET–clay compared with the pure PET and this is attributed to possible adiabatic heating in the PET–clay sample at the higher strain rate. The Halpin–Tsai model is shown to accurately predict the modulus enhancement of the PET–clay materials when a modified particle modulus rather than nominal clay modulus is used.
Resumo:
Methanol has been shown to promote the hydrocarbon selective catalytic reduction of NO with octane and toluene over 2wt% Ag/AlO catalyst for the first time. In order to understand its role in the reaction fast transient kinetic methods and in situ DRIFTS analysis have been used. The catalytic activity tests showed that the addition of methanol to the HC-SCR reaction results in a significant improvement in the low temperature activity of a Ag/AlO catalyst, despite the fact that methanol on its own is not reactive for the HC-SCR reaction. This promotional effect of methanol is dependent on the concentration of added methanol and is not necessarily associated with a higher concentration of reductant in the SCR feed. The fast transient kinetic analysis has shown that at each temperature the addition of methanol enhances the conversions of both NO and octane and the production of N with high selectivity in comparison with those observed with n-octane or toluene alone. This phenomenon is similar to the effect of H which may be associated with the release of hydrogen and ammonia during the transient switches at 250 and 300°C. Together with the fast transient experiments, the DRIFTS results showed that NCO species are formed when introducing methanol to the n-octane-SCR feed while CN species are removed/consumed from the surfaces of the Ag catalyst. These NCO species formed by adding methanol may play a vital role in promoting the catalytic activity of NO reduction and methanol itself can be an in situ source for hydrogen formation, which subsequently enhances the SCR reaction. © 2014 Elsevier B.V.
Resumo:
Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity on the dielectric constant, polarization, Curie temperature (T-C), temperature of maximum dielectric constant (T-m) and temperature of the onset of reversible polarization (T-ferro) for ferroelectric thin films subject to substrate-induced epitaxial strains that are allowed to relax with thickness, and the qualitative and quantitative predictions of the model are compared with experimental results for (Ba0.5Sr0.5)TiO3 thin films on SrRuO3 electrodes. It is shown that flexoelectricity can play an important role in decreasing the maximum dielectric constant of ferroelectric thin films under inhomogeneous in-plane strain, regardless of the sign of the strain gradient.
Resumo:
The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.
Resumo:
Changes in domain wall mobility, caused by the presence of antinotches in single crystal BaTiO3 nanowires, have been investigated. While antinotches appeared to cause a slight broadening in the distribution of switching events, observed as a function of applied electric field (inferred from capacitance-voltage measurements), the effect was often subtle. Greater clarity of information was obtained from Rayleigh analysis of the capacitance variation with ac field amplitude. Here the magnitude of the domain wall mobility parameter (R) associated with irreversible wall movements was found to be reduced by the presence of antinotches - an effect which became more noticeable on heating toward the Curie temperature. The reduction in this domain wall mobility was contrasted with the noticeable enhancement found previously in ferroelectric wires with notches. Finite element modeling of the electric field, developed in the nanowires during switching, revealed regions of increased and decreased local field at the center of the notch and antinotch structures, respectively; the absolute magnitude of field enhancement in the notch centers was considerably greater than the field reduction in the center of the antinotches and this was commensurate with the manner in, and degree to, which domain wall mobility appeared to be affected. We therefore conclude that the main mechanism by which morphology alters the irreversible component of the domain wall mobility in ferroelectric wire structures is via the manner in which morphological variations alter the spatial distribution of the electric field.
Resumo:
Different plasticizers, including phosphate-, phthalate-and adipate-based types were used in the creation of a range of colorimetric plastic film sensors for CO2, The different types of plasticizer used in the formulation of a colorimetric plastic film sensor for CO2 affect the response and recovery times of the sensor differently, An effective plasticizer was taken as one that decreased the response and recovery times of the final film sensor when exposed to an alternating atmosphere of 0-5% CO2. On this basis, the most efficient plasticizers appeared to be phosphate-based, followed by phthalate- and adipate-based plasticizers, This trend appears to reflect the degree of the polymer-plasticizer compatibility. Increasing the amount of plasticizer in the film formulation decreased the response and recovery times of the sensor dramatically, The sensitivity of the film sensor towards CO2 appears to decrease with increasing plasticizer effectiveness; thus, the general order of film CO2 sensitivity with respect to plasticizer type was found to be adipate > phthalate > phosphate. In general, the response of the optical films towards CO2 was found to be temperature sensitive [typically, Delta H = -(44-55) kJ mol(-1)], The phosphate-based plasticized films appear to be less temperature sensitive than the other plasticized films, and 2-ethylhexyl diphenylphosphate appears particularly effective in this respect (Delta H = -18.5 kJ mol(-1)).
Resumo:
Dimethyl ether (DME) is amongst one of the most promising alternative, renewable and clean fuels being considered as a future energy carrier. In this study, the comparative catalytic performance of γ-Al2O3 prepared from two common precursors (aluminum nitrate (AN) and aluminum chloride (AC)) is presented. The impact of calcination temperature was evaluated in order to optimize both the precursor and pre-treatment conditions for the production of DME from methanol in a fixed bed reactor. The catalysts were characterized by TGA, XRD, BET and TPD-pyridine. Under reaction conditions where the temperature ranged from 180 °C to 300 °C with a WHSV = 12.1 h−1 it was found that all the catalysts prepared from AN(η-Al2O3) showed higher activity, at all calcination temperatures, than those prepared from AC(γ-Al2O3). In this study the optimum catalyst was produced from AN and calcined at 550 °C. This catalyst showed a high degree of stability and had double the activity of the commercial γ-Al2O3 or 87% of the activity of commercial ZSM-5(80) at 250 °C.
Resumo:
The effect of colloidal nanosilica on the fresh and rheological parameters, plastic shrinkage, heat of hydration, and compressive strength of cement-based grouts is investigated in this paper. The fresh and rheological properties were evaluated by the minislump flow, Marsh cone flow time, Lombardi plate cohesion meter, yield value, and plastic viscosity. The key parameters investigated were the dosages of nanosilica and superplasticizer and temperature of mixing water. Statistical models and isoresponse curves were developed to capture the significant trends. The dosage of nanosilica had a significant effect on the results. The increase in the dosage of nanosilica led to increasing the values of flow time, plate cohesion meter, yield stress, plastic viscosity, heat of hydration at 1 day and 3 days, and compressive strength at 1 day, while reducing the minislump, plastic shrinkage up 24 h, and compressive strength at 3, 7, and 28 days. Conversely, the increase in the dosage of superplasticizer led to decreasing the values of flow time, plate cohesion meter, yield stress, plastic viscosity, heat of hydration at 1 day and 3 days, and compressive strength at 1 day, while increasing the minislump, plastic shrinkage, and compressive strength at 3 and 7 days. Increasing the temperature of mixing water led to a notable increase in the results of minislump, flow time, plastic viscosity, heat of hydration at 3 days, and compressive strength at 1 day, while it reduced the plate cohesion, compressive strength at 3, 7, and 28 days. The statistical models developed in this study can facilitate optimizing the mixture proportions of grouts for target performance by reducing the number of trial batches needed.
Resumo:
Response surface methodology was used to develop models to predict the effect of tomato cultivar, juice pH, blanching temperature and time on colour change of tomato juice after blanching. The juice from three tomato cultivars with adjusted pH levels ranging from 3.9 to 4.6 were blanched at temperatures from 60-100 °C for 1-5 min using the central composite design (CCD). The colour change was assessed by calculating the redness (a/b) and total colour change (∆E) after measuring the Hunter L, a and b values. Developed models for both redness and ∆E were significant (p<0.0001) with satisfactory coefficient of determination (R2 = 0.99 and 0.97) and low coefficient of variation (CV% = 1.89 and 7.23), respectively. Multilevel validation that was implemented revealed that the variation between the predicted and experimental values obtained for redness and ∆E were within the acceptable error range of 7.3 and 22.4%, respectively