75 resultados para Foreground Context, Image Segmentation, Pattern Recognition, Superpixels
Resumo:
In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.
Resumo:
This paper presents the results of an experimental investigation, carried out in order to verify the feasibility of a ‘drive-by’ approach which uses a vehicle instrumented with accelerometers to detect and locate damage in a bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform and damage indicators are evaluated and compared. Alternative statistical pattern recognition techniques are incorporated to allow for repeated vehicle passes. Parameters such as vehicle speed, damage level, location and road roughness are varied in simulations to investigate the effect. A scaled laboratory experiment is carried out to assess the effectiveness of the approach in a more realistic environment, considering a number of bridge damage scenarios.
Resumo:
In recent years, there has been a move towards the development of indirect structural health monitoring (SHM)techniques for bridges; the low-cost vibration-based method presented in this paper is such an approach. It consists of the use of a moving vehicle fitted with accelerometers on its axles and incorporates wavelet analysis and statistical pattern recognition. The aim of the approach is to both detect and locate damage in bridges while reducing the need for direct instrumentation of the bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform as when the axle passes over a damaged section, any discontinuity in the signal would affect the wavelet coefficients. Based on these coefficients, a damage indicator is formulated which can distinguish between different damage levels. However, it is found to be difficult to quantify damage of varying levels when the vehicle’s transverse position is varied between bridge crossings. In a real bridge field experiment, damage was applied artificially to a steel truss bridge to test the effectiveness of the indirect approach in practice; for this purpose a two-axle van was driven across the bridge at constant speed. Both bridge and vehicle acceleration measurements were recorded. The dynamic properties of the test vehicle were identified initially via free vibration tests. It was found that the resulting damage indicators for the bridge and vehicle showed similar patterns, however, it was difficult to distinguish between different artificial damage scenarios.