155 resultados para Fluorescence Photobleaching Recovery
Resumo:
Formaldehyde run-off was an unintended impact of the anthrax decontamination procedure on the island of Gruinard. The death of intertidal organisms was observed where formaldehyde reached the shore during 1986. The extent to which shores on Gruinard have recovered was assessed with survey work in 2000. Recovery estimates were based on the hypothesis that the process of recolonization is partly dependent on species' dispersal capability. Underdevelopment of the assemblage of species lacking planktonic dispersal stages (direct developers) is therefore evidence that the process of recolonization is ongoing, rather than complete. A novel multivariate test showed that, when comparing quadrats from Gruinard and nearby mainland shores, assemblages of direct developing molluscs were significantly more distinct than assemblages of molluscs with planktonic dispersal stages. The average densities of species with direct development were generally lower on Gruinard than on mainland shores. While some species with direct development have similar densities on Gruinard and on the surrounding shores, the recovery of the overall assemblage was still incomplete after 14 years. In contrast, the harvested species, Littorina littorea, appeared to benefit from the absence of humans visiting Gruinard's shores. Populations of L. littorea on Gruinard contained significantly higher proportions of large individuals. Depending on the dispersal capabilities of different species, Gruinard is either still in recovery or acts as a reserve.
Resumo:
The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.
Resumo:
The potential of laser-induced fluorescence spectroscopy of atoms is reviewed with emphasis on the determination of absolute densities. Examples of experiments with single-photon and two-photon excitation are presented. Calibration methods applicable with the different schemes are discussed. A new method is presented that has the potential to allow absolute measurement in plasmas of elevated pressure where collisional depletion of the excited state is present.
Resumo:
The atmospheric pressure plasma jet is a capacitively coupled radio frequency discharge (13.56 MHz) running with a high helium flux (2m3 h-1) between concentric electrodes. Small amounts (0.5%) of admixed molecular oxygen do not disturb the homogeneous plasma discharge. The jet effluent leaving the discharge through the ring-shaped nozzle contains high concentrations of radicals at a low gas temperature—the key property for a variety of applications aiming at treatment of thermally sensitive surfaces. We report on absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence (TALIF) spectroscopy in the jet effluent. Calibration is performed with the aid of a comparative TALIF measurement with xenon. An excitation scheme (different from the one earlier published) providing spectral matching of both the two-photon resonances and the fluorescence transitions is applied.
Resumo:
In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995nm wavelength range, and designated 2008 TC3 (refs 4-6). It subsequently hit the Earth. Because it exploded at 37km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.