22 resultados para Fines and recoveries.
Resumo:
The pursuit of hard-core cartel activity represents the core aspect of modern antitrust. Since the late 1990s, increased recognition of dangers posed by cartelization has led European competition regulators to initiate organizational changes and to modernize procedures and practice to combat cartels. However, has policy toward hard-core cartels softened in a harsher economic environment from late 2008? This article provides a comparative examination of the approach towards cartels by the European Commission and, at the national level, by the German Bundeskartellamt. It argues that, on current evidence, any doubts about how far the heightened anti-cartel drive could be sustained in the economic downturn post 2008 should be put aside. While some adjustments to fines have been made to take into account inability to pay in exceptional circumstances, no special provisions have been introduced to allow crisis cartels and it appears that the legislation continues to be interpreted strictly by the competition authorities as before.
Resumo:
Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.
Resumo:
A microcosm system was used to investigate and compare transfers of 14C labeled-1,2-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB) in an air-soil-plant system using single grass tillers planted into spiked soil. This study was the second phase of a development investigation for eventual study of a range of xenobiotic pollutants. Recoveries from the system were excellent at >90%. The predominant loss pathway for 14C labeled-1,2-DCB and 1,2,4-TCB was volatilisation with 85% and 76% volatilisation of parent compound and volatile metabolites over 5 weeks respectively. Most of the added label in the hexachlorobenzene spiked system remained in soil. Mineralisation was
Resumo:
Tetrodotoxin (TTX) is one of the most potent marine neurotoxins reported. The global distribution of this toxin is spreading with the European Atlantic coastline now being affected. Climate change and increasing pollution have been suggested as underlying causes for this. In the present study, two different sample preparation techniques were used to extract TTX from Trumpet shells and pufferfish samples. Both extraction procedures (accelerated solvent extraction (ASE) and a simple solvent extraction) were shown to provide good recoveries (80-92%). A UPLC-MS/MS method was developed for the analysis of TTX and validated following the guidelines contained in the Commission Decision 2002/657/EC for chemical contaminant analysis. The performance of this procedure was demonstrated to be fit for purpose. This study is the first report on the use of ASE as a mean for TTX extraction, the use of UPLC-MS/MS for TTX analysis, and the validation of this method for TTX in gastropods.
Resumo:
The ontogeny of continent-wide navigation mechanisms of the individual organism, despite being crucial for the understanding of animal movement and migration, is still poorly understood. Several previous studies, mainly conducted on passerines, indicate that inexperienced, juvenile birds may not generally correct for displacement during fall migration. Waterbirds such as the mallard (Anas platyrhynchos, Linnaeus 1758) are more flexible in their migration behavior than most migratory songbirds, but previous experiments with waterbirds have not yet allowed clear conclusions about their navigation abilities. Here we tested whether immature mallard ducks correct for latitudinal displacement during fall migration within Europe. During two consecutive fall migration periods, we caught immature females on a stopover site in southeast Sweden, and translocated a group of them ca. 1,000 km to southern Germany. We followed the movements of the ducks via satellite GPS-tracking and observed their migration decisions during the fall and consecutive spring migration. The control animals released in Ottenby behaved as expected from banding recoveries: they continued migration during the winter and in spring returned to the population's breeding grounds in the Baltics and Northwest Russia. Contrary to the control animals, the translocated mallards did not continue migration and stayed at Lake Constance. In spring, three types of movement tactics could be observed: 61.5% of the ducks (16 of 26) stayed around Lake Constance, 27% (7 of 26) migrated in a northerly direction towards Sweden and 11.5% of the individuals (3 of 26) headed east for ca. 1,000 km and then north. We suggest that young female mallards flexibly adjust their migration tactics and develop a navigational map that allows them to return to their natal breeding area.
Resumo:
A highly sensitive broad specificity monoclonal antibody was produced and characterised for microcystin detection through the development of a rapid surface plasmon resonance (SPR) optical biosensor based immunoassay. The antibody displayed the following cross-reactivity: MC-LR 100%; MC-RR 108%; MC-YR 68%; MC-LA 69%; MC-LW 71%; MC-LF 68%; and Nodularin 94%. Microcystin-LR was covalently attached to a CM5 chip and with the monoclonal antibody was employed in a competitive 4min injection assay to detect total microcystins in water samples below the WHO recommended limit (1µg/L). A 'total microcystin' level was determined by measuring free and intracellular concentrations in cyanobacterial culture samples as this toxin is an endotoxin. Glass bead beating was used to lyse the cells as a rapid extraction procedure. This method was validated according to European Commission Decision 96/23/EC criteria. The method was proven to measure intracellular microcystin levels, the main source of the toxin, which often goes undetected by other analytical procedures and is advantageous in that it can be used for the monitoring of blooms to provide an early warning of toxicity. It was shown to be repeatable and reproducible, with recoveries from spiked samples ranging from 74 to 123%, and had % CVs below 10% for intra-assay analysis and 15% for inter-assay analysis. The detection capability of the assay was calculated as 0.5ng/mL for extracellular toxins and 0.05ng/mL for intracellular microcystins. A comparison of the SPR method with LC-MS/MS was achieved by testing six Microcystis aeruginosa cultures and this study yielded a correlation R(2) value of 0.9989.
Resumo:
Gravel aquifers act as important potable water sources in central western Europe yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers Escherichia coli and Pseudomonas putida, was used to investigate a calcareous gravel aquifer’s ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed E. coli relative recoveries could exceed those of H40/1 at monitoring wells 10 m and 20 m from an injection well by almost four times; P. putida recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged E. coli occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged P. putida experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.