49 resultados para Fault proness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a decoupled fault ride-through strategy for a doubly fed induction generator (DFIG) to enhance network stability during grid disturbances. The decoupled operation proposes that a DFIG operates as an induction generator (IG) with the converter unit acting as a reactive power source during a fault condition. The transition power characteristics of the DFIG have been analyzed to derive the capability of the proposed strategy under various system conditions. The optimal crowbar resistance is obtained to exploit the maximum power capability from the DFIG during decoupled operation. The methods have been established to ensure proper coordination between the IG mode and reactive power compensation from the grid-side converter during decoupled operation. The viability and benefits of the proposed strategy are demonstrated using different test network structures and different wind penetration levels. Control performance has been benchmarked against existing grid code standards and commercial wind generator systems, based on the optimal network support required (i.e., voltage or frequency) by the system operator from a wind farm installed at a particular location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for the compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the compression properties of the discrete wavelet transform using actual power system data. The results presented in the paper indicate that reduction ratios up to 10:1 with acceptable distortion are achievable. The paper discusses the application of the reduction method for expedient fault analysis and protection assessment.