54 resultados para Fast heavy ion
Resumo:
We present a technique for measuring the radiative lifetimes of metastable states of negative ions that involves the use of a heavy-ion storage ring. The method has been applied to investigate the radiative decay of the np3 2P1/2 levels of Te–(n=5) and Se–(n=4) and the 3p3 2D state of Si– for which the J=3/2 and 5/2 levels were unresolved. All of these states are metastable and decay primarily by emission of E2 and M1 radiation. Multi Configuration Dirac-Hartree-Fock calculations of rates for the transitions in Te– and Se– yielded lifetimes of 0.45 s and 4.7 s, respectively. The measured values agree well with these predicted values. In the case of the 2D state of Si–, however, our measurement was only able to set a lower limit on the lifetime. The upper limit of the lifetime that can be measured with our apparatus is set by how long the ions can be stored in the ring, a limit determined by the rate of collisional detachment. Our lower limit of 1 min for the lifetime of the 2D state is consistent with both the calculated lifetimes of 162 s for the 2D3/2 level and 27.3 h for the 2D5/2 level reported by O'Malley and Beck and 14.5 h and 12.5 h, respectively, from our Breit-Pauli calculations.
Resumo:
Based on an accurate first principles description of the energetics in H-bonded potassium-dihydrogen-phosphate crystals, we conduct a first study of nuclear quantum effects and of the changes brought about by deuteration. Tunneling is allowed only for clusters involving correlated protons and heavy ion displacements, the main effect of deuteration being a depletion of the proton probability density at the O-H-O bridge center, which in turn weakens its proton-mediated covalent bonding. The ensuing lattice expansion couples self-consistently with the proton off-centering, thus explaining both the giant isotope effect and its close connection with geometrical effects.
Resumo:
Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at~2meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X=C or N)while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10-6 (T/300)-0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan’s upper atmosphere are discussed.
Resumo:
In this report we show first results on dielectronic recombination (DR) measurements with H-like uranium U91+. The experiments were conducted at the heavy ion storage ring ESR of GSI. The electron cooler of the ESR was used as a target for free electrons. Stochastic pre-cooling of the stored ion beam was employed in order to accomplish high-energy resolution at the necessary high electron-ion collision energies of more than 64 keV. For the DR of U91+ this novel technique enabled us to measure for the first time the KLL-DR process and even to resolve the individual j-j' fine structure components of the KLjLj' resonances. The experimental data are compared with fully relativistic Multi-Configuration Dirac-Fock (DR-MCDF) calculations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from ~1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 × 10-7 (T/300)^-0.78 cm3 s-1 for electron temperatures, T, ranging from ~10 to ~1000 K. The branching fractions of the reaction have been studied at ~2 meV relative kinetic energy. It has been found that ~87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.
Resumo:
Absolute rate coefficients for dielectronic recombination (DR) of H-like U91+ ions have been measured. The electron-ion merged-beam technique at a heavy-ion storage ring was employed using a stochastically cooled ion beam. Thereby, the previously accessible electron-ion collision energies could be greatly extended to the range 63-90 keV. High-resolution DR spectra were measured covering all KLL and KLM resonances. For the resonance strengths, excellent agreement between relativistic theory and experiment is found only if the Breit contribution to the electron-electron interaction is included in the calculations. For the KL1/2L1/2 and KL1/2M1/2 groups the Breit contribution amounts to 44% of their total resonance strengths.
Resumo:
The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.
Resumo:
The effects of electron correlation and second-order terms on theoretical total cross sections of transfer ionization in collisions of the helium atom with fast H+, He2+ and Li3+ ions are studied and reported. The total cross sections are calculated using highly correlated wavefunctions with expansion of the transition amplitude in the Born series through the second order. The results of these calculations are in sensible agreement with experimental data.
Resumo:
Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.
Resumo:
We report on the observation of fast hydrogen atoms in a capacitively coupled RF reactor by optical emission spectroscopy. For the analysis we use the prominent H-alpha emission line of atomic hydrogen in combination with other lines from molecular hydrogen and argon. Several chaxacteristic emission structures can be identified. One of these structures is related to fast hydrogen atoms traveling from the surface of the powered electrode to the plasma bulk. From the appearance time within the RF period we conclude that this feature originates from ion bombardment of the electrode surface. Measured pressure dependencies and a simple model for the ion dynamics support this assumption.
Resumo:
Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10(20) W/cm(2)) and ultra-high contrast (similar to 10(10)) laser pulses with 0.05-10 mu m thick Al foils at normal (0 degrees) and 35 degrees laser incidence is investigated. When decreasing the target thickness from 10 mu m down to 0.05 mu m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 degrees) laser incidence on the target. A laser energy conversion into protons of,similar to 6.5% is estimated at 35 degrees laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3643133]