41 resultados para Fairchild Tropical Garden.
Resumo:
Relevance theory (Sperber & Wilson. 1995) suggests that people expend cognitive effort when processing information in proportion to the cognitive effects to be gained from doing so. This theory has been used to explain how people apply their knowledge appropriately when evaluating category-based inductive arguments (Medin, Coley, Storms, & Hayes, 2003). In such arguments, people are told that a property is true of premise categories and are asked to evaluate the likelihood that it is also true of conclusion categories. According to the relevance framework, reasoners generate hypotheses about the relevant relation between the categories in the argument. We reasoned that premises inconsistent with early hypotheses about the relevant relation would have greater effects than consistent premises. We designed three premise garden-path arguments where the same 3rd premise was either consistent or inconsistent with likely hypotheses about the relevant relation. In Experiments 1 and 2, we showed that effort expended processing consistent premises (measured via reading times) was significantly less than effort expended on inconsistent premises. In Experiment 2 and 3, we demonstrated a direct relation between cognitive effect and cognitive effort. For garden-path arguments, belief change given inconsistent 3rd premises was significantly correlated with Premise 3 (Experiment 3) and conclusion (Experiments 2 and 3) reading times. For consistent arguments, the correlation between belief change and reading times did not approach significance. These results support the relevance framework for induction but are difficult to accommodate under other approaches.
Resumo:
A freshly dead bigeye tuna Thunnus obesus was washed ashore near Burry Port, Wales (51 degrees 40' N; 4 degrees 15' W) in August, 2006. This is only the third occasion that the species has been observed in British waters, and is the largest and most northerly recorded specimen.
Resumo:
Aspidochirote holothurians found on tropical reef flats feed on particulate deposits which form a variety of substrata. The synaptid holothurian Opheodesoma grisea (Semper) feeds in a similar manner by scraping deposits from the surfaces of sea grasses. Distributional and gut content analyses showed that species partitioning is on the basis of substratum and particle size preference. Scanning electron microscopy revealed that the tentacles of aspidochirotes have a nodular surface while those of O. grisea have a tessellated surface structure. The twelve different species examined were shown to have different tentacular surface textures which bore an apparent relationship with the mean particle sizes selected by the different species. Light microscope studies of tentacle sections confirmed earlier observations on the extent of the water vascular system in aspidochirote and pinnate tentacles. From these observations a functional interpretation is proposed for tentacular operation and the means of particle selection in such holothurians.
Resumo:
There has been considerable uncertainty about the nature of Pleistocene environments colonised by the first modern humans in Island SE Asia, and about the vegetation of the Last Glacial Maximum (LGM) in the region. Here, the palynology from a series of exposures in the Great Cave of Niah, Sarawak, Malaysian Borneo, spanning a period from ca. 52,000 to 5000 BP is described. Vegetation during this period was climate-driven and often highly unstable. Interstadials are marked by lowland forest, sometimes rather dry and at times by mangroves. Stadials are indicated by taxa characteristic of open environments or, as at the LGM, by highly disturbed rather open forest. Stadials are also characterised by taxa now restricted to 1000-1600 m above sea level, suggesting temperature declines of ca 7-9 C relative to present, by comparison with modern lapse rates. The practice of biomass burning appears associated with the earliest human activity in the cave.
Resumo:
Geochemical variables (TOC, C/N, TS, delta C-13) and diatom assemblages were analyzed in a lake sediment sequence from Nong (Lake) Han Kumphawapi in northeast Thailand to reconstruct regional climatic and environmental history during the Holocene. By around c. 10,000-9400 cal yr BP, a large shallow freshwater lake had formed in the Kumphawapi basin. Oxygenated bottom waters and a well-mixed water column were characteristic of this early lake stage, which was probably initiated by higher effective moisture and a stronger summer monsoon. Decreased run-off after c. 6700 cal yr BP favored increased aquatic productivity in the shallow lake. Multiple proxies indicate a marked lowering of the lake level around 5900 cal yr BP, the development of an extensive wetland around 5400 cal yr BP, and the subsequent transition to a peatland. The shift from shallow lake to wetland and later to a peatland is interpreted as a response to lower effective moisture. A hiatus at the transition from wetland to peatland suggests very low accumulation rates, which may result from very dry climatic conditions. A rise in groundwater and lake level around 3200 cal yr BP allowed the re-establishment of a wetland in the Kumphawapi basin. However, the sediments deposited between c. 3200 and 1600 cal yr BP provide evidence for at least two hiatuses at c. 2700-2500 cal yr BP, and at c. 1900-1600 cal yr BP, which would suggest surface dryness and consequently periods of low effective moisture. Around 1600 cal yr BP a new shallow lake became re-established in the basin. Although the underlying causes for this new lake phase remain unclear, we hypothesize that higher effective moisture was the main driving force. This shallow lake phase continued up to the present but was interrupted by higher nutrient fluxes to the lake around 1000-600 cal yr BP. Whether this was caused by intensified human impact in the catchment or, whether this signals a lowering of the lake level due to reduced effective moisture, needs to be corroborated by further studies in the region. The multi-proxy study of Kumphawapi's sediment core CP3A clearly shows that Kumphawapi is a sensitive archive for recording past shifts in effective moisture, and as such in the intensity of the Asian summer monsoon. Many more continental paleorecords, however, will be needed to fully understand the spatial and temporal patterns of past changes in Asian monsoon intensity and its ecosystem impacts. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.
Resumo:
Millipede gut microbiology and decomposition of faecal pellets over a period of eight weeks were studied in the laboratory. Bacterial numbers, carbon and nitrogen content, pH and weight loss were monitored. Heterotrophic bacteria were the most abundant and reached a peak in the first two weeks of decomposition. The amount of carbon was constant while ammonium nitrogen decreased from 1.51 % to 0.03 % after eight weeksThe pH of the pellets was slightly acidic and did not change much during the course of decomposition. A succession of micro-organisms was observed on decomposing pellets. Zygomycetes were replaced by Ascomycetes after 20 days of decomposition. Decomposition was significantly affected by temperature. The rate of decomposition was highest at 35[degree]C .