20 resultados para Failure Load
Resumo:
Engineers have proposed the idea that there may be some arching action present in bridge deck cantilever overhangs stiffened along their longitudinal free edge, via a traffic barrier, subjected to a wheel load. This paper includes the details of a full-scale corrosion-free bridge deck with cantilever overhangs stiffened along their longitudinal free edge by a traffic barrier wall that has been constructed and tested under static and fatigue wheel loads at the University of Manitoba. It also reviews experimental test results and postulates various discussions that suggest the presence of arching-action in cantilever slab overhangs. Test results indicated static ultimate load capacities significantly greater than the ultimate capacity if the mode of failure and behavior of the cantilever overhang was completely flexural. These early results confirm and indicate the presence of arching-action resulting in a significant break-through in cantilever behavior when subjected to a wheel load. The theory to account for this arching-action is not yet developed and further research should be conducted.
Resumo:
Composites with a weak interface between the filler and matrix which are susceptible to interfacial crack formation are studied. A finite-element model is developed to predict the stres/strain behavior of particulate composites with an interfacial crack. This condition can be distinguished as a partially bonded inclusion. Another case arises when there is no bonding between the inclusion and the matrix. In this latter case the slip boundary condition is imposed on the section of the interface which remains closed. The states of stress and displacement fields are obtained for both cases. The location of any further deformation through crazing or shear band formation is identified as the crack tip. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the crack tip. Whereas this might lead to slightly higher strength, it decreases the load-transfer efficiency and stiffness of this type of composite. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The research aims to carry out a detailed analysis of the loads applied by the ambulance workers when loading/unloading ambulance stretchers. The forces required of the ambulance workers for each system are measured using a load cell in a force handle arrangement. The process of loading and unloading is video recorded for all the systems to register the posture of the ambulance workers in different stages of the process. The postures and forces exerted by the ambulance workers are analyzed using biomechanical assessment software to examine if the work loads at any stage of the process are harmful. Kinetic analysis of each stretcher loading system is performed. Comparison of the kinetic analysis and measurements shows very close agreement for most of the cases. The force analysis results are evaluated against derived failure criteria. The evaluation is extended to a biomechanical failure analysis of the ambulance worker's lower back using 3DSSPP software developed at the Centre for Ergonomics at the University of Michigan. The critical tasks of each ambulance worker during the loading and unloading operations for each system are identified. Design recommendations are made to reduce the forces exerted based on loading requirements from the kinetic analysis. © 2006 IPEM.
Resumo:
This paper details the theory and implementation of a composite damage model, addressing damage within a ply (intralaminar) and delamination (interlaminar), for the simulation of crushing of laminated composite structures. It includes a more accurate determination of the characteristic length to achieve mesh objectivity in capturing intralaminar damage consisting of matrix cracking and fibre failure, a load-history dependent material response, an isotropic hardening nonlinear matrix response, as well as a more physically-based interactive matrix-dominated damage mechanism. The developed damage model requires a set of material parameters obtained from a combination of standard and non-standard material characterisation tests. The fidelity of the model mitigates the need to manipulate, or "calibrate", the input data to achieve good agreement with experimental results. The intralaminar damage model was implemented as a VUMAT subroutine, and used in conjunction with an existing interlaminar damage model, in Abaqus/Explicit. This approach was validated through the simulation of the crushing of a cross-ply composite tube with a tulip-shaped trigger, loaded in uniaxial compression. Despite the complexity of the chosen geometry, excellent correlation was achieved with experimental results.
Resumo:
As an alternative to externally bonded FRP reinforcement, near-surface mounted (NSM) FRP reinforcement can be used to effectively improve the flexural performance of RC beams. In such FRP strengthened RC beams, end cover separation failure is one of the common failure modes. This failuremode involves the detachment of the NSM FRP reinforcement together with the concrete cover along the level of the tension steel reinforcement. This paper presents a new strength model for end cover separation failure in RC beams strengthened in flexure with NSM FRP strips (i.e. rectangular FRP bars with asectional height-to-thickness ratio not less than 5), which was formulated on the basis of extensive numerical results from a parametric study undertaken using an efficient finite element approach. The proposed strength model consists of an approximate equation for the debonding strain of the FRP reinforcement at the critical cracked section and a conventional section analysis to relate this debondingstrain to the moment acting on the same section (i.e. the debonding strain). Once the debonding strain is known, the load level at end cover separation of an FRP-strengthened RC beam can be easily determined for a given load distribution. Predictions from the proposed strength model are compared with those of two existing strength models of the same type and available test results, which shows that the proposed strength model is in close agreement with test results and is far more accurate than the existing strength models.