68 resultados para FUEL-CELL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel tubular cell structure for a direct methanol fuel cell (DMFC) is proposed based on a tubular Ti mesh and a Ti mesh anode. A dip coating method has been developed to fabricate the cell. The characterization of the tubular MEA has been analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), half cell and single cell testing. The tubular DMFC single cell comprises: a Ti mesh, a cathode diffusion layer and catalyst layer, a Nafion recast membrane and a PtRuO/Ti anode. Half cell tests show that the optimum catalyst loading, Ru/(Ru + Pt) atomic ratio and the Nafion loading of a PtRuO/Ti mesh anode are: 4 mg cm, 38% and 0.6 mg cm, respectively. Single cell tests show that the Nafion loading of the recast Nafion membrane and the concentration of the methanol in the electrolyte have a major influence on cell performance. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactivity of the Ru(0 0 0 1) electrode towards the adsorption and electrooxidation of CO and methanol has been studied by variable-temperature in situ FTIR spectroscopy in both perchloric acid and sodium hydroxide solution, and the results interpreted in terms of the surface chemistry of the Ru(0 0 0 1) electrode. Both linear (CO) and threefold hollow (CO) binding CO adsorbates (bands at 1970-2040 and 1770-1820 cm, respectively) were observed on the Ru(0 0 0 1) electrode in both 0.1 M HClO and 0.1 M NaOH solutions from the CO adsorption. In the acid solution, CO was detected as the main adsorbed species on Ru(0 0 0 1) surface over all the potential region studied. In contrast, in the alkaline solution, more CO than CO was detected at lower potentials, whilst increasing the potential resulted in the transformation of CO to CO. At higher potentials, the oxidation of the adsorbed CO took place via reaction with the active (1 × 1)-O oxide/hydroxide. It was found that no dissociative adsorption or electrooxidation of methanol took place at the Ru(0 0 0 1) at potentials below 900 mV vs Ag/AgCl in perchloric acid solution at both 20 and 55°C. However, in the alkaline solution, methanol did undergo dissociative adsorption, to form linearly adsorbed CO (CO) with little or no CO adsorbed at threefold hollow sites (CO) at both 20 and 55°C. Increasing the temperature from 20 to 55°C clearly facilitated the methanol dissociative adsorption to CO and also enhanced the electrooxidation of the CO. At the higher potentials, significant oxidation of methanol to CO and methyl formate in acid solution and to bicarbonate and formate in alkaline solution, was observed, which was attributed to the formation of an active RuO phase on the Ru(0 0 0 1) surface, in agreement with our previous studies. © 2003 Elsevier Ltd. All right reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time Fourier transform infrared spectroscopy (FTIRS) analysis of the products of methanol oxidation in a prototype direct-methanol fuel cell operating at high temperatures (150 to 185°C) is reported here. The methanol oxidation products on platinum black and platinum-ruthenium catalyst surfaces were determined as a function of the fuel cell operating temperature, current density, and methanol/water mole ratio. Neither formaldehyde nor formic acid was detected in anode exhaust gas at all cell operating conditions. The product distributions of methanol oxidation obtained by on-line FTIRS are consistent with our previous results obtained by on-line mass spectroscopy under similar conditions. With pure methanol in anode feed, methanaldimethylacetal was found to be the main product, methyl formate and CO were also found. However, when water was present in the anode feed, the main product was CO , and the formation of methanaldimethylacetal and methyl formate decreased significantly with increase of the water/methanol mole ratio. Increase of cell operating temperature enhanced the formation of CO and decreased the formation of methanaldimethylacetal and methyl formate. Pt/Ru catalyst is more active for methanol oxidation and has a higher selectivity toward CO formation than Pt-black. Nearly complete methanol oxidation, i.e., the product was almost exclusively CO , was achieved using a Pt/Ru catalyst and a water/methanol mole ratio of 2 or higher in the anode feed at a temperature of 185°C or above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of trimethoxymethane (TMM) (trimethyl orthoformate) in a direct oxidation PBI fuel cell was examined by on-line mass spectroscopy and on-line FTIR spectroscopy. The results show that TMM was almost completely hydrolyzed in a direct oxidation fuel cell which employs an acid doped polymer electrolyte to form a mixture of methylformate, methanol and formic acid. It also found that TMM was hydrolyzed in the presence of water at 120°C even without acidic catalyst. The anode performance improves in the sequence of methanol, TMM, formic acid/methanol, and methylformate solutions. Since formic acid is electrochemically more active than methanol, these results suggest that formic acid is probably a key factor for the improvement of the anode performance by using TMM instead of methanol under these conditions. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PtRu/Ti anodes with varying Pt : Ru ratio were prepared by electrodeposition of a thin PtRu catalyst layer onto Ti mesh for a direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX and XRD. The catalyst coating layer shows an alloy character. The relative activities of the PtRu/Ti electrodes were assessed and compared in half cell and single DMFC experiments. The results show that these electrodes are very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 9 at.% for DMFC operating at 20°C and 11 at.% at 60°C. The PtRu/Ti anode shows a performance comparable to that of the conventional carbon-based anode in a DMFC operating with 0.25 M or 0.5 M methanol solution and atmosphere oxygen gas at 90°C. © the Owner Societies 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anode structure based on Ti mesh has been developed for the direct methanol fuel cell (DMFC). This new anode was prepared by electrochemical deposition of a ~ 3 µ m PtRu catalyst layer on ~ 50 µ m Ti mesh. It has a thinner structure compared to that of a porous carbon-based conventional anode. The Ti mesh anode shows a performance comparable to, and exceeding that, of the conventional anode in a DMFC operating with 0.25 or 0.5 M methanol solution and atmosphere oxygen at 90 C. However, it shows a lower performance of the cell when higher concentrations of methanol was employed. This may be attributed to its thin and open structure, which could facilitate the transport of methanol from the flow field to the anode catalyst layer and carbon dioxide in the opposite direction. © 2006 International Association for Hydrogen Energy.