187 resultados para FRTL-5 CELLS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intrinsic or acquired resistance to chemotherapy is a major clinical problem that has evoked the need to develop innovative approaches to predict and ultimately reverse drug resistance. A prolonged G(2)M arrest has been associated with apoptotic resistance to various microtubule-targeting agents (MTAs). In this study, we describe the functional significance of the mitotic spindle checkpoint proteins, BubR1 and Bub3, in maintaining a mitotic arrest after microtubule disruption by nocodazole and a novel series of MTAs, the pyrrolo-1,5-benzoxazepines (PBOXs), in human cancer cells. Cells expressing high levels of BubR1 and Bub3 (K562, MDA-MB-231, and HeLa) display a prolonged G(2)M arrest after exposure to MTAs. On the other hand, cells with low endogenous levels of mitotic spindle checkpoint proteins (SK-BR-3 and HL-60) transiently arrest in mitosis and undergo increased apoptosis. The phosphorylation of BubR1 correlated with PBOX-induced G(2)M arrest in four cell lines tested, indicating an active mitotic spindle checkpoint. Gene silencing of BubR1 by small interfering RNA interference reduced PBOX-induced G(2)M arrest without enhancing apoptotic efficacy. Further analysis demonstrated that PBOX-treated BubR1-depleted cells were both mononucleated and multinucleated with a polyploid DNA content, suggesting a requirement for BubR1 in cytokinesis. Taken together, these results suggest that BubR1 contributes to the mitotic checkpoint induced by the PBOXs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either drug alone (P < 0.01). Cell cycle analysis of propidium iodide-stained cells showed that STI-571 significantly reduced PBOX-6-induced G2M arrest and polyploid formation with a concomitant increase in apoptosis. Similar results were obtained in K562 CML cells using lead MTAs (paclitaxel and nocodazole) in combination with STI-571. Potentiation of PBOX-6-induced apoptosis by STI-571 was specific to Bcr-Abl-positive leukemia cells with no cytoxic effects observed on normal peripheral blood cells. The combined treatment of STI-571 and PBOX-6 was associated with the down-regulation of Bcr-Abl and repression of proteins involved in Bcr-Abl transformation, namely the antiapoptotic proteins Bcl-x(L) and Mcl-1. Importantly, PBOX-6/STI-571 combinations were also effective in STI-571-resistant cells. Together, these findings highlight the potential clinical benefits in simultaneously targeting the microtubules and the Bcr-Abl oncoprotein in STI-571-sensitive and -resistant CML cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds have been shown to induce apoptosis in a number of human leukemia cell lines of different haematological lineage, suggesting their potential as anti-cancer agents. In this study, we sought to determine if PBOX-6, a well characterised member of the PBOX series of compounds, is also an effective inhibitor of breast cancer growth. Two estrogen receptor (ER)-positive (MCF-7 and T-47-D) and two ER-negative (MDA-MB-231 and SK-BR-3) cell lines were examined. The 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine reduction in cell viability. PBOX-6 reduced the cell viability of all four cell lines tested, regardless of ER status, with IC(50) values ranging from 1.0 to 2.3 microM. PBOX-6 was most effective in the SK-BR-3 cells, which express high endogenous levels of the HER-2 oncogene. Overexpression of the HER-2 oncogene has been associated with aggressive disease and resistance to chemotherapy. The mechanism of PBOX-6-induced cell death was due to apoptosis, as indicated by the increased proportion of cells in the pre-G1 peak and poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, intratumoural administration of PBOX-6 (7.5 mg/kg) significantly inhibited tumour growth in vivo in a mouse mammary carcinoma model (p=0.04, n=5, Student's t-test). Thus, PBOX-6 could be a promising anti-cancer agent for both hormone-dependent and -independent breast cancers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of the transforming oncogene bcr-abl in chronic myelogenous leukemia (CML) cells is reported to confer resistance against apoptosis induced by many chemotherapeutic agents such as etoposide, ara-C, and staurosporine. In the present study some members of a series of novel pyrrolo-1,5-benzoxazepines potently induce apoptosis, as shown by cell shrinkage, chromatin condensation, DNA fragmentation, and poly(ADP-ribose) polymerase (PARP) cleavage, in three CML cell lines, K562, KYO.1, and LAMA 84. Induction of apoptosis by a representative member of this series, PBOX-6, was not accompanied by either the down-regulation of Bcr-Abl or by the attenuation of its protein tyrosine kinase activity up to 24 h after treatment, when approximately 50% of the cells had undergone apoptosis. These results suggest that down-regulation of Bcr-Abl is not part of the upstream apoptotic death program activated by PBOX-6. By characterizing the mechanism in which this novel agent executes apoptosis, this study has revealed that PBOX-6 caused activation of caspase 3-like proteases in only two of the three CML cell lines. In addition, inhibition of caspase 3-like protease activity using the inhibitor z-DEVD-fmk blocked caspase 3-like protease activity but did not prevent the induction of apoptosis, suggesting that caspase 3-like proteases are not essential in the mechanism by which PBOX-6 induces apoptosis in CML cells. In conclusion, this study demonstrates that PBOX-6 can bypass Bcr-Abl-mediated suppression of apoptosis, suggesting an important potential use of these compounds in the treatment of CML.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Pancreatic adenocarcinoma is a lethal disease with 5-year survival of less than 5%. 5-fluorouracil (5-FU) is a principal first-line therapy, but treatment only extends survival modestly and is seldom curative. Drug resistance and disease recurrence is typical and there is a pressing need to overcome this. To investigate acquired 5-FU resistance in pancreatic adenocarcinoma, we established chemoresistant monoclonal cell lines from the Panc 03.27 cell line by long-term exposure to increasing doses of 5-FU.

RESULTS: 5-FU-resistant cell lines exhibited increased expression of markers associated with multidrug resistance explaining their reduced sensitivity to 5-FU. In addition, 5-FU-resistant cell lines showed alterations typical for an epithelial-to-mesenchymal transition (EMT), including upregulation of mesenchymal markers and increased invasiveness. Microarray analysis revealed the L1CAM pathway as one of the most upregulated pathways in the chemoresistant clones, and a significant upregulation of L1CAM was seen on the RNA and protein level. In pancreatic cancer, expression of L1CAM is associated with a chemoresistant and migratory phenotype. Using esiRNA targeting L1CAM, or by blocking the extracellular part of L1CAM with antibodies, we show that the increased invasiveness observed in the chemoresistant cells functionally depends on L1CAM. Using esiRNA targeting β-catenin and/or Slug, we demonstrate that in the chemoresistant cell lines, L1CAM expression depends on Slug rather than β-catenin.

CONCLUSION: Our findings establish Slug-induced L1CAM expression as a mediator of a chemoresistant and migratory phenotype in pancreatic adenocarcinoma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Hematopoietic stem cell renewal and differentiation are regulated through epigenetic processes. The conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) by ten-eleven-translocation enzymes provides new insights into the epigenetic regulation of gene expression during development. Here, we studied the potential gene regulatory role of 5hmC during human hematopoiesis.

RESULTS: We used reduced representation of 5-hydroxymethylcytosine profiling (RRHP) to characterize 5hmC distribution in CD34+ cells, CD4+ T cells, CD19+ B cells, CD14+ monocytes and granulocytes. In all analyzed blood cell types, the presence of 5hmC at gene bodies correlates positively with gene expression, and highest 5hmC levels are found around transcription start sites of highly expressed genes. In CD34+ cells, 5hmC primes for the expression of genes regulating myeloid and lymphoid lineage commitment. Throughout blood cell differentiation, intragenic 5hmC is maintained at genes that are highly expressed and required for acquisition of the mature blood cell phenotype. Moreover, in CD34+ cells, the presence of 5hmC at enhancers associates with increased binding of RUNX1 and FLI1, transcription factors essential for hematopoiesis.

CONCLUSIONS: Our study provides a comprehensive genome-wide overview of 5hmC distribution in human hematopoietic cells and new insights into the epigenetic regulation of gene expression during human hematopoiesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spontaneous Ca2+ sparks were observed in fluo 4-loaded myocytes from guinea pig vas deferens with line-scan confocal imaging. They were abolished by ryanodine (100 microM), but the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) blockers 2-aminoethoxydiphenyl borate (2-APB; 100 microM) and intracellular heparin (5 mg/ml) increased spark frequency, rise time, duration, and spread. Very prolonged Ca2+ release events were also observed in approximately 20% of cells treated with IP3R blockers but not under control conditions. 2-APB and heparin abolished norepinephrine (10 microM; 0 Ca2+)-evoked Ca2+ transients but increased caffeine (10 mM; 0 Ca2+) transients in fura 2-loaded myocytes. Transients evoked by ionomycin (25 microM; 0 Ca2+) were also enhanced by 2-APB. Ca2+ sparks and transients evoked by norepinephrine and caffeine were abolished by thimerosal (100 microM), which sensitizes the IP3R to IP3. In cells voltage clamped at -40 mV, spontaneous transient outward currents (STOCs) were increased in frequency, amplitude, and duration in the presence of 2-APB. These data are consistent with a model in which the Ca2+ store content in smooth muscle is limited by tonic release of Ca2+ via an IP3-dependent pathway. Blockade of IP3Rs elevates sarcoplasmic reticulum store content, promoting Ca2+ sparks and STOC activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor alpha (TNFalpha). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFalpha resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFalpha-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca(2+) release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5'-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5' portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFalpha, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

opical administration of excess exogenous 5-aminolevulinic acid (ALA) leads to selective accumulation of the potent photosensitiser protoporphyrin IX (PpIX) in neoplastic cells, which can then be destroyed by irradiation with visible light. Due to its hydrophilicity, ALA penetrates deep lesions, such as nodular basal cell carcinomas (BCCs) poorly. As a result, more lipophilic esters of ALA have been employed to improve tissue penetration. In this study, the in vitro release of ALA and M-ALA from proprietary creams and novel patch-based systems across normal stratum corneum and a model membrane designed to mimic the abnormal stratum corneum overlying neoplastic skin lesions were investigated. Receiver compartment drug concentrations were compared with the concentrations of each drug producing high levels of PpIX production and subsequent light-induced kill in a model neoplastic cell line (LOX). LOX cells were found to be quite resistant to ALA- and M-ALA-induced phototoxicity. However, drug concentrations achieved in receiver compartments were comparable to those required to induce high levels of cell death upon irradiation in cell lines reported in the literature. Patches released significantly less drug across normal stratum corneum and significantly more across the model membrane. This is of major significance since the selectivity of PDT for neoplastic lesions will be further enhanced by the delivery system. ALA/M-ALA will only be delivered in significant amounts to the abnormal tissue. PpIX will only then accumulate in the neoplastic cells and the normal surrounding tissue will be unharmed upon irradiation.