32 resultados para FRESH-WATER ENVIRONMENTS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media - a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT) to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS) dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only 14 consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The removal of water from three Portland cement grouts by pressure filtration is examined, and the consolidation behaviour of the filtered material clarified. The filtration takes place by the laying down of a very stiff filter cake through the removal of excess water. The behaviour due to further loading resembles that of a re-constituted silt. For stress levels above the filtration pressure the calculated permeability values are similar to those from the filtration phase only if the data sampling rate was sufficiently rapid to discriminate the first portion of the observed primary consolidation curve. The change in void ratio for incremental loading is roughly linear with the change in the logarithm of the vertical effective stress. The characterisation of fresh cement paste using standard soil mechanics models is both appropriate and useful, at least during the first few hours after mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In arid regions, biodiversity and biomass are limited by water availability, and this problem has been compounded by desertification associated with global climate change. The saprotrophic macrofungi that are indigenous to hot subtropical and tropical regions, such as Pleurotus spp., can play key roles in water sequestration, nutrient cycling, human nutrition, and bioremediation of waste materials. We studied 15 strains of Pleurotus sajor-caju, a widespread and phenotypically-diverse species, to establish variability in growth response and primordium development over a range of stress parameters: osmotic potential (-0.5 to -5 MPa), temperature (5-40 degrees C) and pH (2-12). The initiation of primordia precedes basidiome production and therefore represents a key stage in bioremediation strategies and fungi-driven nutrient cycles. Primordia were produced at low pH (4-6), at suboptimal growth temperatures (<or =25 degrees C), and under moderate water stress (-0.5 to -3.5 MPa). Although the growth windows for different strains were similar, their maximum growth rates and the optimum conditions for growth varied. We discuss the phenotypic diversity of Pleurotus strains and discuss their potential for cultivation, bioremediation and ecological regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thecamoebians were examined from 71 surface sediment samples collected from 21 lakes and ponds in the Greater Toronto Area to (1) elucidate the controls on faunal distribution in modern lake environments; and (2) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of kettle and other lakes which are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Fifty-eight samples yielded statistically significant thecamoebian populations. The most diverse faunas (highest Shannon Diversity Index values) were recorded in lakes beyond the limits of urban development, although the faunas of all lakes showed signs of sub-optimal conditions. The assemblages were divided into five clusters using Q-mode cluster analysis, supported by Detrended Correspondence Analysis. Canonical Correspondence Analysis (CCA) was used to examine species-environment relationships and to explain the observed clusterings. Twenty-four measured environmental variables were considered, including water property attributes (e.g., pH, conductivity, dissolved oxygen), substrate characteristics, sediment-based phosphorus (Olsen P) and 11 environmentally available metals. The thecamoebian assemblages showed a strong association with phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. Substrate characteristics, total organic carbon and metal contaminants (particularly Cu and Mg) also influenced the faunas of some samples. A series of partial CCAs show that of the measured variables, sedimentary phosphorus has the largest influence on assemblage distribution, explaining 6.98% (P < 0.002) of the total variance. A transfer function was developed for sedimentary phosphorus (Olsen P) using 58 samples from 15 of the studied lakes. The best performing model was based on weighted averaging with inverse deshrinking (WA Inv, r jack 2= 0.33, RMSEP = 102.65 ppm). This model was applied to a small modern thecamoebian dataset from a eutrophic lake in northern Ontario to predict phosphorus and performed satisfactorily. This preliminary study confirms that thecamoebians have considerable potential as quantitative water quality indicators in urbanising regions, particularly in areas influenced by nutrient inputs and road salts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-consolidating concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work conditions and also reduce the impact on the environment by elimination of the need for compaction. This investigation aimed at exploring the potential use of the neurofuzzy (NF) approach to model the fresh and hardened properties of SCC containing pulverised fuel ash (PFA) as based on experimental data investigated in this paper. Twenty six mixes were made with water-to-binder ratio ranging from 0.38 to 0.72, cement content ranging from 183 to 317 kg/m3 , dosage of PFA ranging from 29 to 261 kg/m3 , and percentage of superplasticizer, by mass of powder, ranging from 0 to 1%. Nine properties of SCC mixes modeled by NF were the slump flow, JRing combined to the Orimet, JRing combined to cone, V-funnel, L-box blocking ratio, segregation ratio, and the compressive strength at 7, 28, and 90 days. These properties characterized the filling ability, the passing ability, the segregation resistance of fresh SCC, and the compressive strength. NF model is constructed by training and testing data using the experimental results obtained in this study. The results of NF models were compared with experimental results and were found to be quite accurate. The proposed NF models offers useful modeling approach of the fresh and hardened properties of SCC containing PFA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete placed under water should be proportioned to flow readily into place with minimum materials separation. Unlike concrete cast for deep tremie seals, the use of concrete in repairs often necessitates some free fall of the mixture through water. Such placement conditions lead to greater risk of water erosion and segregation, and should be addressed in proportioning highly flowable underwater concrete. This paper evaluates the effect of free-fall height (FFH) of concrete through water on resulting in-place properties. Concrete was cast in blocks measuring 0.54 x 0.44 x 1 m with the initial FFH in water ranging between 0.25 and 0.60 m. In-place compressive and splitting tensile strengths, unit weight, and depth of washed-out and sedimentation materials were determined. In total, 24 highly flowable mixtures with slump flows greater than 500 mm were investigated. The evaluated mixtures were prepared with various hydraulic binders, including conventional Type 10 cement, a binary mixture with 10% of silica fume (SF), and a ternary binder incorporating 20% of fly ash (FA) and 6% of SF. The mixtures were proportioned with water-binder ratios (w/b) ranging between 0.41 and 0.47. Test results show that the increase of FFH of fresh concrete in water can greatly decrease the residual strength and significantly increase the thickness of washed out and sedimentation materials. The incorporation of 10% of SF, or 20% of FA and 6% of SF, and the reduction of the w/b from 0.47 to 0.41 can, however, lead to a significant increase in washout resistance and residual strength. A relationship between residual strength and the coupled factor of free-fall drop of concrete in water and washout resistance is established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (a w) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at a w values of = 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In small islands, a freshwater lens can develop due to the recharge induced by rain. Magnitude and spatial distribution of this recharge control the elevation of freshwater and the depth of its interface with salt water. Therefore, the study of lens morphology gives useful information on both the recharge and water uptake due to evapotranspiration by vegetation. Electrical resistivity tomography was applied on a small coral reef island, giving relevant information on the lens structure. Variable density groundwater flow models were then applied to simulate freshwater behavior. Cross validation of the geoelectrical model and the groundwater model showed that recharge exceeds water uptake in dunes with little vegetation, allowing the lens to develop. Conversely, in the low-lying and densely vegetated sectors, where water uptake exceeds recharge, the lens cannot develop and seawater intrusion occurs. This combined modeling method constitutes an original approach to evaluate effective groundwater recharge in such environments.
[Comte, J.-C., O. Banton, J.-L. Join, and G. Cabioch (2010), Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads, Water Resour. Res., 46, W06601, doi:10.1029/2009WR008058.]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes-metabolites that protect against osmotic and chaotrope-induced stresses-ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope-induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the surface zone of concrete is acknowledged as a major factor governing the rate of deterioration of reinforced concrete structures as it provides the only barrier to the ingress of water containing dissolved ionic species such as chlorides which, ultimately, initiate corrosion of the reinforcement. In-situ monitoring of cover-zone concrete is therefore critical in attempting to make realistic predictions as to the in-service performance of the structure. To this end, this paper presents developments in a remote interrogation system to allow continuous, real-time monitoring of the cover-zone concrete from an office setting. Use is made of a multi-electrode array embedded within cover-zone concrete to acquire discretized electrical resistivity and temperature measurements, with both parameters monitored spatially and temporally. On-site instrumentation, which allows remote interrogation of concrete samples placed at a marine exposure site, is detailed, together with data handling and processing procedures. Site-measurements highlight the influence of temperature on electrical resistivity and an Arrhenius-based temperature correction protocol is developed using on-site measurements to standardize resistivity data to a reference temperature; this is an advancement over the use of laboratory-based procedures. The testing methodology and interrogation system represents a robust, low-cost and high-value technique which could be deployed for intelligent monitoring of reinforced concrete structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial riboflavin receptors adapted to aqueous environments were studied for their ability to selectively extract riboflavine (Rf) from three types of beverages i.e. milk, beer and a multivitamin mixture. The basic receptor was first prepared by molecular imprinting in nonaqueous medium using a hydrogen-bond donor-acceptor-donor functional monomer (2,6-bis(acrylamido)pyridine), complementary to the imide motif of the template, riboflavin tetra-acetate as template and pentaerythritol triacrylate (PETA) as a hydrophilic cross-linking monomer. The polymer was then packed in columns and used for extraction of riboflavine from beverages. Riboflavine (Rf) was selectively removed from milk and an artificial vitamin mixture but the nonspecific binding was still significant, as judged from the binding of Rf to a control nonimprinted polymer. In order to suppress this nonspecific binding, attempts to hydrolytically hydrophilize the polymer matrix were performed. The preferred approach consisted in a controlled base hydrolysis of pendent unreacted acrylate groups, using hydroxides with differently sized counterions as reagents. This resulted in a decreased binding of Rf to both polymers, but to an equal extent implying a preferential suppression of the nonspecific contribution to the binding. The hydrophilized polymers, when subjected to beer, showed larger imprinting factors at lower phase ratios compared to the nontreated polymers and a maximum removal of 86% compared to 47% for the nonimprinted control polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thecamoebians were examined from 123 surface sediment samples collected from 45 lakes in the Greater Toronto Area (GTA) and the surrounding region to i) elucidate the controls on faunal distribution in modern lake environments; and ii) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of lakes that are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Canonical Correspondence analysis (CCA) and a series of partial CCAs were used to examine species-environment relationships. Twenty-four environmental variables were considered, including water properties (e.g. pH, DO, conductivity), substrate characteristics, nutrient loading, and environmentally available metals. The thecamoebian assemblages showed a strong association with Olsen's Phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. A transfer function was developed for Olsen P using this training set based on weighted averaging with inverse deshrinking (WA Inv). The model was applied to infer past changes in Phosphorus enrichment in core samples from several lakes, including eutrophic Haynes Lake within the GTA. Thecamoebian-inferred changes in sedimentary Phosphorus from a 210Pb dated core from Haynes Lake are related to i) widespread introduction of chemical fertilizers to agricultural land in the post WWII era; ii) a steep decline in Phosphorous with a change in agricultural practices in the late 1970s; and iii) the construction of a golf course in close proximity to the lake in the early 1990s. This preliminary study confirms that thecamoebians have considerable potential as indicators of eutrophication in lakes and can provide an estimate of baseline conditions.