68 resultados para FOLSOMIA-CANDIDA COLLEMBOLA
Resumo:
Objective: To describe the epidemiology of Candida bloodstream infections (BSI) in Northern Ireland. Methods: Retrospective collation of data relating to all clinically significant BSI in a university teaching hospital, which had been recorded prospectively, between 1984 and 2000. Results: One hundred and forty five episodes of candidaemia occurred in 144 patients (of mean age 56.6 years). The contribution of Candida spp. towards all significant BSI increased from 2.00% to 2.5%. C. albicans was the most frequently isolated species, however, its incidence fell from 70% to 53% during the study period. The greatest increase in incidence was seen with C. glabrata which was the most common non-albicans species. Twenty-nine per cent of isolates occurred in patients from an intensive care unit and, surprisingly, a further 25.5% occurred in patients from a surgical service. Conclusion: There appears to be several subtle differences in the epidemiology of candidal BSI between Northern Ireland and other countries. © 2002 The British Infection Society.
Resumo:
In contrast to the multitude of studies on fungal PCR assay methods, little work has been reported evaluating Candida PCR performance when using whole blood compared with serum in candidaemic patients. Here, a comparison of the performance of whole-blood and serum specimens using a set of real-time PCR Candida species assays is described. Specimens were collected prospectively from non-neutropenic adults who were recruited to a diagnostic clinical trial, the primary purpose of which was to verify the performance of the assays using serum; in all, 104 participants also had whole-blood specimens submitted for analysis in addition to the serum specimen. Of these participants, 10 had laboratory-confirmed candidaemia and 94 were categorized as being 'unlikely' to have invasive Candida infection. PCR results from the whole-blood specimens are presented here and compared with the results from serum specimens in this subgroup among whom both specimen types were obtained contemporaneously. All participants with candidaemia were PCR-positive from serum samples; however, only seven were PCR-positive from whole blood. All specimens from patients in the 'unlikely' category were PCR-negative in both types of specimen. Moreover, DNA extraction from serum required 1 h; extraction from whole blood required approximately 3 h. These data tentatively suggest that, overall, serum is an appropriate specimen for Candida PCR for detection of candidaemia in non-neutropenic adults.
Resumo:
The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.
Resumo:
A study is performed to examine the distribution and frequency of 25S rRNA intron genotypes of Candida albicans isolated from different anatomical sites of patients in an intensive care unit (ICU) setting. Germ-tube positive Candida isolates (n=65) from 65 patients are included and isolates are characterised by 25S intron genotyping, whereby all can be subdivided into four genotypes (A-D). Results demonstrated that there were no significant differences between the frequency and genotype distribution of the Candida isolates and the anatomical site of colonisation. Furthermore, analysis of the transposable intron region in the 25S rRNA gene demonstrated equal distribution, regardless of age and anatomical site of isolation (groin, throat, etc.). Therefore, there does not appear to be any selective pressure associated with any anatomical site, resulting in an ecological shift in the frequency of genotypes present. This suggests that C. albicans intron genotypes equally colonise those sites of the body examined in this study. Although such an ecological finding as this is interesting, it perpetuates the continued need to find a genotypic typing scheme that helps to identify the source (nosocomial or endogenous) and mode of entry of C. albicans into patients in the ICU setting, resulting in C. albicans bloodstream infection.
Resumo:
In view of both the delay in obtaining identification by conventional methods following blood-culture positivity in patients with candidaemia and the close relationship between species and fluconazole (FLC) susceptibility, early speciation of positive blood cultures has the potential to influence therapeutic decisions. The aim was to develop a rapid test to differentiate FLC-resistant from FLC-sensitive Candida species. Three TaqMan-based real-time PCR assays were developed to identify up to six Candida species directly from BacT/Alert blood-culture bottles that showed yeast cells on Gram staining at the time of initial positivity. Target sequences in the rRNA gene complex were amplified, using a consensus two-step PCR protocol, to identify Candida albicans, Candida parapsilosis, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida krusei; these are the most commonly encountered Candida species in blood cultures. The first four of these (the characteristically FLC-sensitive group) were identified in a single reaction tube using one fluorescent TaqMan probe targeting 1 8S rRNA sequences conserved in the four species. The FLC-resistant species C. krusei and C. glabrata were detected in two further reactions, each with species-specific probes. This method was validated with clinical specimens (blood cultures) positive for yeast (n=33 sets) and the results were 100% concordant with those of phenotypic identification carried out concomitantly. The reported assay significantly reduces the time required to identify the presence of C. glabrata and C. krusei in comparison with a conventional phenotypic method, from ~72 to
Comparison of media for optimal recovery of Candida albicans and Candida glabrata from blood culture
Resumo:
Candida spp., mainly Candida albicans, are frequently responsible for complications in immunocompromised patients. There are limited data comparing recovery efficiency using simple non-selective basal broth media.
Resumo:
To determine the frequency, distribution and association of genotypes of Candida albicans and C. dubliniensis in invasive and noninvasive clinical isolates.
Resumo:
A study was carried out to compare the API20C technology with polymerase chain reaction amplification and direct sequencing of the short internal transcribed spacer region 2 (ITS2) for the identification of 58 isolates of invasive candida species obtained from patients with bloodstream infections over the seven year period 1994 to 2000. Overall, there was only one disagreement between the phenotypic and genotypic identification, where the API scheme identified the isolate as C albicans but the molecular method identified it as C dubliniensis. This study demonstrated that the API20C method is useful in the identification of Candida spp isolated from blood culture and that molecular methods do not enhance identifications made using the API20C scheme. However, for correct reporting of C dubliniensis, an emerging bloodborne pathogen, it is recommended that all isolates identified as C albicans by the API20C scheme are further examined phenotypically and/or genotypically.
Resumo:
We tested whether the distribution of three common springtail species (Gressittacantha terranova, Gomphiocephalus hodgsoni and Friesea grisea) in Victoria Land (Antarctica) could be modelled as a function of latitude, longitude, altitude and distance from the sea.
Victoria Land, Ross Dependency, Antarctica.
Generalized linear models were constructed using species presence/absence data relative to geographical features (latitude, longitude, altitude, distance from sea) across the species' entire ranges. Model results were then integrated with the known phylogeography of each species and hypotheses were generated on the role of climate as a major driver of Antarctic springtail distribution.
Based on model selection using Akaike's information criterion, the species' distributions were: hump-shaped relative to longitude and monotonic with altitude for Gressittacantha terranova; hump-shaped relative to latitude and monotonic with altitude for Gomphiocephalus hodgsoni; and hump-shaped relative to longitude and monotonic with latitude, altitude and distance from the sea for Friesea grisea.
No single distributional pattern was shared by the three species. While distributions were partially a response to climatic spatial clines, the patterns observed strongly suggest that past geological events have influenced the observed distributions. Accordingly, present-day spatial patterns are likely to have arisen from the interaction of historical and environmental drivers. Future studies will need to integrate a range of spatial and temporal scales to further quantify their respective roles.
Resumo:
Background. Invasive Candida infection among nonneutropenic, critically ill adults is a clinical problem that has received increasing attention in recent years. Poor performance of extant diagnostic modalities has promoted risk-based, preemptive prescribing in view of the poor outcomes associated with inadequate or delayed antifungal therapy; this risks unnecessary overtreatment. A rapid, reliable diagnostic test could have a substantial impact on therapeutic practice in this patient population.
Methods. Three TaqMan-based real-time polymerase chain reaction assays were developed that are capable of detecting the main medically important Candida species, categorized according to the likelihood of fluconazole susceptibility. Assay 1 detected Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Assays 2 and 3 detected Candida glabrata and Candida krusei, respectively. The clinical performance of these assays, applied to serum, was evaluated in a prospective trial of nonneutropenic adults in a single intensive care unit.
Results. In all, 527 specimens were obtained from 157 participants. All 3 assays were run in parallel for each specimen; they could be completed within 1 working day. Of these, 23 specimens were obtained from 23 participants categorized as having proven Candida infection at the time of sampling. If a single episode of Candida famata candidemia was excluded, the estimated clinical sensitivity, specificity, and positive and negative predictive values of the assays in this trial were 90.9%, 100%, 100% and 99.8%, respectively.
Conclusions. These data suggest that the described assays perform well in this population for enhancing the diagnosis of candidemia. The extent to which they may affect clinical outcomes, prescribing practice, and cost-effectiveness of care remains to be ascertained.
Resumo:
We describe the isolation and structural characterization of a family of antimicrobial peptides related to kassinatuerin-2, from the skin secretion of the African hyperoliid frog, Kassina maculata. All four peptides, designated kassinatuerin-2Ma through Md, are C-terminally-amidated 20-mers with the consensus sequence – FX1GAIAAALPHVIX2AIKNAL – where X1 = L/F/V/I and X2 = S/N. All four peptides are encoded by precursors of 69 amino acids. Synthetic replicates of all kassinatuerin-2 related peptides displayed a potent inhibitory activity against Staphylococcus aureus with a minimal inhibitory concentration of 16 µM, at which concentration, however, they effected 18% haemolysis of horse erythrocytes after 2 h. Despite obvious membranolytic properties, all peptides were ineffective at inhibiting the growth of Escherichia coli at concentrations up to 200 µM and were relatively ineffective against Candida albicans (MIC 120 µM). The kassinatuerin-2 related peptides of K. maculata skin secretion thus possess a discrete antimicrobial and weak haemolytic activity in contrast to the prototype kassinatuerin-2 from the skin secretion of Kassina senegalensis.
Resumo:
Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study compares conventional and molecular techniques for the detection of fungi in 77 adult cystic fibrosis (CF) patients. Three different methods were investigated, i.e., (1) conventional microbiological culture (including yeasts and filamentous fungi), (2) mycological culture with CF-derived fungal specific culture media, and (3) Non-culture and direct DNA extraction from patient sputa. Fungi isolated from environmental air samples of the CF unit were compared to fungi in sputa from CF patients. Fungi (n = 107) were detected in 14/77(18%) of patients by method 1, in 60/77 (78%) of patients by method 2 and with method 3, in 77/77(100%) of the patients. The majority of yeasts isolated were Candida albicans and C. dubliniensis. Exophiala (Wangiella) dermatitidis, Scedosporiumapiospermum, Penicillium spp., Aspergillus fumigatus, and Aspergillus versicolor were also identified by sequence analysis of the rDNA short internal transcribed spacer (ITS2) region. Conventional laboratory analysis failed to detect fungi in 63 patients mainly due to overgrowth by Gram-negative organisms. Mycological culture with antibiotics dramatically increased the number of fungi that could be detected. Molecular techniques detected fungi such as Saccharomyces cerevisiae, Malassezia spp., Fuscoporia ferrea, Fusarium culmorum, Acremonium strictum, Thanatephorus cucumeris and Cladosporium spp. which were not found with other methods. This study demonstrates that several potentially important fungi may not be detected if mycological culture methods alone are used. A polyphasic approach employing both enhanced mycological culture with molecular detection will help determine the presence of fungi in the sputa of patients with CF and their healthcare environment.