27 resultados para Exponential equations
Resumo:
In the presence of inhomogeneities, defects and currents, the equations describing a Bose-condensed ensemble of alkali atoms have to be solved numerically. By combining both linear and nonlinear equations within a Discrete Variable Representation framework, we describe a computational scheme for the solution of the coupled Bogoliubov-de Gennes (BdG) and nonlinear Schrodinger (NLS) equations for fields in a 3D spheroidal potential. We use the method to calculate the collective excitation spectrum and quasiparticle mode densities for excitations of a Bose condensed gas in a spheroidal trap. The method is compared against finite-difference and spectral methods, and we find the DVR computational scheme to be superior in accuracy and efficiency for the cases we consider. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Predicting the velocity within the ship’s propeller jet is the initial step to investigate the scouring made by the propeller jet. Albertson et al. (1950) suggested the investigation of a submerged jet can be undertaken through observation of the plain water jet from an orifice. The plain water jet investigation of Albertson et al. (1950) was based on the axial momentum theory. This has been the basis of all subsequent work with propeller jets. In reality, the velocity characteristic of a ship’s propeller jet is more complicated than a plain water jet. Fuehrer and Römisch (1977), Blaauw and van de Kaa (1978), Berger et al. (1981), Verhey (1983) and Hamill (1987) have carried out investigations using physical model. This paper reviews the state-of-art of the equations used to predict the time-averaged axial, tangential and radial components of velocity within the zone of flow establishment and the zone of established flow of a ship’s propeller jet.
Resumo:
A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 ( R) ( 2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such a situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.
Resumo:
A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.
Resumo:
A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.
Resumo:
Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).
Resumo:
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions.
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms.
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging.
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab.
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function.
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized.
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.
Resumo:
We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.
Resumo:
We extend the generalized Langevin equation (GLE) method [L. Stella, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 89, 134303 (2014)] to model a central classical region connected to two realistic thermal baths at two different temperatures. In such nonequilibrium conditions a heat flow is established, via the central system, in between the two baths. The GLE-2B (GLE two baths) scheme permits us to have a realistic description of both the dissipative central system and its surrounding baths. Following the original GLE approach, the extended Langevin dynamics scheme is modified to take into account two sets of auxiliary degrees of freedom corresponding to the mapping of the vibrational properties of each bath. These auxiliary variables are then used to solve the non-Markovian dissipative dynamics of the central region. The resulting algorithm is used to study a model of a short Al nanowire connected to two baths. The results of the simulations using the GLE-2B approach are compared to the results of other simulations that were carried out using standard thermostatting approaches (based on Markovian Langevin and Nosé-Hoover thermostats). We concentrate on the steady-state regime and study the establishment of a local temperature profile within the system. The conditions for obtaining a flat profile or a temperature gradient are examined in detail, in agreement with earlier studies. The results show that the GLE-2B approach is able to treat, within a single scheme, two widely different thermal transport regimes, i.e., ballistic systems, with no temperature gradient, and diffusive systems with a temperature gradient.