47 resultados para Experimental dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta-D-glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate in a 6 : 1 molar ratio (ionic liquid : glucose) has been studied by neutron scattering, NMR and molecular dynamics simulations. Good agreement was found between simulated neutron scattering profiles generated for isotopically substituted liquid systems and those experimentally determined as well as between simulated and experimental diffusion coefficients obtained by Pulsed Field Gradient NMR spectroscopy. The overriding glucose-ionic liquid interactions in the liquid are hydrogen-bonding between acetate oxygens and sugar hydroxyl groups. The ionic liquid cation was found to play only a minor role in the solvation of the sugar and does not participate in hydrogen-bonding with the sugar to any significant degree. NOESY experiments lend further evidence that there is no direct interaction between sugar hydroxyl groups and acidic hydrogens on the ionic liquid cation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the effect of restricting the vortex-induced vibrations of a spring-mounted rigid cylinder by means of stiff mechanical endstops. Cases of both asymmetric and symmetric restraint are investigated. Results show that limiting the amplitude of the vibrations strongly affects the dynamics of the cylinder, particularly when the offset is small. Fluid-structure interaction is profoundly affected, and the well-known modes of vortex shedding observed with a linear elastic system are modified or absent. There is no evidence of lock-in, and the dominant impact frequency corresponds to a constant Strouhal number of 0.18. The presence of an endstop on one side of the motion can lead to large increases in displacements in the opposite direction. Attention is also given to the nature of the developing chaotic motion, and to impact velocities, which in single-sided impacts approach the maximum velocity of a cylinder with linear compliance undergoing VIV at lock-in. With symmetrical endstops, impact velocities were about one-half of this. Lift coefficients are computed from an analysis of the cylinder’s motion between impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the results of computational fluid dynamics simulations of flow, temperature, and concentration distributions used in the design of a microreactor for the high-throughput screening of catalytic coatings (Mies et al., Chem. Eng. J. 2004, 101, 225) are compared with experimental data, and good agreement is obtained in all cases. The experimental results on flow distribution were obtained from laser Doppler anemometry measurements in the range of Reynolds numbers from 6 to 113. The measured flow nonuniformity in the separate reactor compartments was below 2%. The temperature distribution was obtained from thermocouple measurements. The temperature nonuniformity between the reactor compartments was below 3 K at a maximum heat production rate of 1.3 W in ethylene oxidation at 425 degrees C over CuO/Al2O3/Al coatings. With respect to concentration gradients, a deviation from the average rate of reaction of only 2.3% was obtained at realistic process conditions in the ethylene ammoxidation process over identical Co-ZSM-5 coatings in all reactor compartments. The cross talking noise between separate compartments does not exceed 0.1% when the reactor parts have a smooth surface finish. This illustrates the importance of ultraprecision machining of surfaces in microtechnology, when interfaces cannot be avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the v x B component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient production of coherent harmonic radiation from solid targets relies critically on the formation of smooth, short density scalelength plasmas. Recent experimental results (Dromey et al 2009 Nat. Phys. 5 146) suggest, however, that the target roughness on the scale of the emitted harmonic wavelength does not result in diffuse reflection-in apparent contradiction to the Rayleigh criterion for coherent reflection. In this paper we show, for the first time, using analytic theory and 2D PIC simulations, that the interaction of relativistically strong laser pulses with corrugated target surfaces results in a highly effective smoothing of the interaction surface and consequently the generation of highly collimated and temporally confined XUV pulses from rough targets, in excellent agreement with experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comprehensive numerical study of the dynamics of an intense laser pulse as it propagates through an underdense plasma in two and three dimensions. By varying the background plasma density and the polarization of the laser beam, significant differences are found in terms of energy transport and dissipation, in agreement with recently reported experimental results. Below the threshold for relativistic self-focusing, the plasma and laser dynamics are observed to be substantially insensitive to the initial laser polarization, since laser transport is dominated by ponderomotive effects. Above this threshold, relativistic effects become important, and laser energy is dissipated either by plasma heating (p-polarization) or by trapping of electromagnetic energy into plasma cavities (s-polarization) or by a combination of both (circular polarization). Besides the fundamental interest of this study, the results presented are relevant to applications such as plasma-based accelerators, x-ray lasers, and fast-ignition inertial confinement fusion. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737151]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined experimental-computational study on the CO absorption on 1-butyl-3-methylimidazolium hexafluophosphate, 1-ethyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, and 1-butyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide ionic liquids is reported. The reported results allowed to infer a detailed nanoscopic vision of the absorption phenomena as a function of pressure and temperature. Absorption isotherms were measured at 318 and 338K for pressures up to 20MPa for ultrapure samples using a state-of-the-art magnetic suspension densimeter, for which measurement procedures are developed. A remarkable swelling effect upon CO absorption was observed for pressures higher than 10MPa, which was corrected using a method based on experimental volumetric data. The experimental data reported in this work are in good agreement with available literature isotherms. Soave-Redlich-Kwong and Peng-Robinson equations of state coupled with bi-parametric van der Waals mixing rule were used for successful correlations of experimental high pressure absorption data. Molecular dynamics results allowed to infer structural, energetic and dynamic properties of the studied CO+ionic liquids mixed fluids, showing the relevant role of the strength of anion-cation interactions on fluid volumetric properties and CO absorption. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD(+) cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic solitary waves in plasmas are the focus of many current studies of localized electrostatic disturbances in both laboratory and astrophysical plasmas. Motivated by recent experimental observations, in which electrostatic solitary structures were detected in laser-plasma experiments, we have undertaken an investigation of the nonlinear dynamics of plasma evolving in two dimensions, in the presence of excess superthermal background electrons. We investigate the effect of a magnetic field on weakly nonlinear ion-acoustic waves. Deviation from the Maxwellian distribution is effectively modelled by the kappa model. A linear dispersion relation is derived, and a decrease in frequency and phase speed in both parallel and perpendicular modes can be seen, which is due to excess superthermal electrons, and which is stronger in the upper mode, and hardly noticeable in the lower (acoustic) mode. We show that ion-acoustic solitary waves can be generated during the nonlinear evolution of a plasma fluid, and their nonlinear propagation is governed by a Zakharov-Kuznetsov (ZK) type equation. A multiple scales perturbation technique is used to derive the ZK equation. Shock excitations can be produced if we allow for dissipation in the model, resulting in a Zakharov-Kuznetsov Burgers type equation. Different types of shock solutions and solitary waves are obtained, depending on the relation between the system parameters, and the effect of these on electrostatic shock structures is investigated numerically. A parametric investigation is conducted into the role of plasma nonthermality and magnetic field strength. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the conditions under which the trace distance between two different states of a given open system increases in time due to the interaction with an environment, therefore signaling non-Markovianity. We find that the finite-time difference in trace distance is bounded by two sharply defined quantities that are strictly linked to the occurrence of system-environment correlations created throughout their interaction and affecting the subsequent evolution of the system. This allows us to shed light on the origin of non-Markovian behaviors in quantum dynamics. We best illustrate our findings by tackling two physically relevant examples: a non-Markovian dephasing mechanism that has been the focus of a recent experimental endeavor and the open-system dynamics experienced by a spin connected to a finite-size quantum spin chain.