17 resultados para Eutrophication.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A constructed wetland at Greenmount College, Co. Antrim, N. Ireland was built in 2004 to study the treatment of ‘dirty water’ effluent from the Greenmount dairy unit. The effluent has a mean BOD5 of c.1000 mg/L and contains milking parlour wash-water and runoff from silage clamps and yard areas lightly contaminated with cattle manure. The nominal water retention time of this wetland is 100 days. The primary purposes of the wetland are to eliminate organic pollution and eutrophication risk from nitrogen and phosphorus compounds. However the wetland should also effectively remove any zoonotic pathogens present in manure and milk. Accordingly, a 12-month microbiological survey of water in the five ponds of the wetland commenced in August 2007. The aims of the survey are to determine changes, as effluent passes through the wetland system, in a broad range of indicator organisms (faecal coliforms, Escherichia coli, Enterococcus faecalis and Clostridium perfringens) and the occurrence of several pathogens - Salmonella, Campylobacter, Cryptosporidium and Mycobacterium avium subsp. paratuberculosis (Map). The highest indicator organism counts - E. coli and faecal coliforms, 103-104 CFU/ml - are observed in pond 1, and a significant reduction (1-3 log10) in all indicator organisms occurs as water passes through the wetland from pond 1 to pond 5. Hence the wetland is efficient at reducing levels of indicator organisms in the dairy effluent. Salmonella and Campylobacter spp. are being detected intermittently in all the ponds, whilst Cryptosporidium and Map have yet to be detected, and so the ability of the wetland to reduce/eliminate specific pathogens is less clear at present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the labile status of phosphorus (P) in sediments is crucial for managing a eutrophic lake, but it is hindered by lacking in situ data particularly on a catchment scale. In this study, we for the first time characterized in situ labile P in sediments with the Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique at a two-dimensional (2D), submillimeter resolution in a large eutrophic lake (Lake Taihu, China, with an area of 2338km2). The concentration of DGT-labile P in the sediment profiles showed strong variation mostly ranging from 0.01 to 0.35mgL-1 with a considerable number of hotspots. The horizontal heterogeneity index of labile P varied from 0.04 to 4.5. High values appeared at the depths of 0-30mm, likely reflecting an active layer of labile P under the sediment-water interface (SWI). Concentration gradients of labile P were observed from the high-resolution 1D DGT profiles in both the sediment and overlying water layers close to the SWI. The apparent diffusion flux of P across the SWI was calculated between -21 and 65ngcm-2d-1, which showed that the sediments tended to be a source and sink of overlying water P in the algal- and macrophyte-dominated regions, respectively. The DGT-labile P in the 0-30mm active layer showed a better correlation with overlying water P than the labile P measured by ex situ chemical extraction methods. It implies that in situ, high-resolution profiling of labile P with DGT is a more reliable approach and will significantly extend our ability in in situ monitoring of the labile status of P in sediments in the field.