29 resultados para Environmental values
Resumo:
In this study, palaeoenvironmental changes recorded in the top metre of a peat profile (Misten bog, East Belgium) were investigated using a multiproxy approach. Proxies include bulk density, Ti and Si content, pollen, macrofossils, d13C on specific Sphagnum stems, and d13C–d18O on Sphagnum leaves. A high-resolution chronology was generated using 210Pb measurements and 22 14C AMS dates on carefully selected Sphagnum macrofossils. d13C only records large change in mire surface wetness. This is partly due to the fact that the core was taken from the edge of a hummock, which may make it difficult to track small isotopic changes. The d13C signal seems to be dependent upon the Sphagnum species composition. For example, a change between Sphagnum section Cuspidata towards Sphagnum imbricatum causes a significant drop in the d13C values. On the whole, the C and O isotopes record two shallow pool phases during the 8th–9th and the 13th centuries. Pollen and atmospheric soil dust (ASD) fluxes records increased human occupation in the area. There may be some climatic signals in the ASD flux, but they are difficult to decipher from the increasing human impact (land clearance, agriculture) during the last millennium. The variations in the proxies are not always synchronous, suggesting different triggering factors (temperature, wetness, windiness) for each proxy. This study also emphasizes that, compared to studies dealing with pollution using geochemical proxies, palaeoclimatic inferences from peat bogs need as many proxies as possible, together with highly accurate and precise age-models, in order to better understand climate variability and their consequences during the Holocene.
Resumo:
Questions: 1. Indicator values, such as those of Ellenberg, for different environmental factors are seen as independent. We tested for the presence of interactions between environmental factors ( soil moisture and reaction) to see if this assumption is simplistic. 2. How close are Ellenberg indicator values (IVs) related to the observed optima of species response curves in an area peripheral to those where they have been previously employed and 3. Can the inclusion of bryophytes add to the utility of IVs?
Location: South Uist, Outer Hebrides, Scotland, UK.
Methods: Two grids (ca. 2000 m x 2000 m) were sampled at 50-m intervals across the transition from machair to upland communities covering an orthogonal gradient of both soil pH ( reaction) and soil moisture content. Percentage cover data for vascular plants, bryophytes and lichens were recorded, along with pH and moisture content of the underlying sand/soil/peat. Reaction optima, derived from species response curves calculated using HOF models, were compared between wet and dry sites, and moisture optima between acidic and basic samples. Optima for the whole data set were compared to Ellenberg IVs to assess their performance in this area, with and without the inclusion of bryophytes.
Results: A number of species showed substantially different pH optima at high and low soil moisture contents (18% of those tested) and different soil moisture optima at high and low pH (49%). For a number of species the IVs were poor predictors of their actual distribution across the sampled area. Bryophytes were poor at explaining local variation in the environmental factors and also their inclusion with vascular plants negatively affected the strength of relationships.
Conclusions: A substantial number of species showed an interaction between soil moisture and reaction in determining their optima on the two respective gradients. It should be borne in mind that IVs such as Ellenberg's may not be independent of one another.
Resumo:
BACKGROUND: Although serum ECP concentrations have been reported in normal children, there are currently no published upper cutoff reference limits for serum ECP in normal, nonatopic, nonasthmatic children aged 1-15 years.
METHODS: We recruited 123 nonatopic, nonasthmatic normal children attending the Royal Belfast Hospital for Sick Children for elective surgery and measured serum ECP concentrations. The effects of age and exposure to environmental tobacco smoke (ETS) on the upper reference limits were studied by multiple regression and fractional polynomials.
RESULTS: The median serum ECP concentration was 6.5 microg/l and the 95th and 97.5 th percentiles were 18.8 and 19.9 microg/l. The median and 95th percentile did not vary with age. Exposure to ETS was not associated with altered serum ECP concentrations (P = 0.14).
CONCLUSIONS: The 95th and 97.5 th percentiles for serum ECP for normal, nonatopic, nonasthmatic children (aged 1-15 years) were 19 and 20 microg/l, respectively. Age and exposure to parental ETS did not significantly alter serum ECP concentrations or the normal upper reference limits. Our data provide cutoff upper reference limits for normal children for use of serum ECP in a clinical or research setting.
PMID: 10604557 [PubMed - indexed for MEDLINE]
Resumo:
Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO) and body temperature (T) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) 'winter' and long-day (LD) 'summer' photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO values than sub-Alpine mice. In addition, mice exposed to short days had higher VO values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased T in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing T during ('winter') conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher T during ('summer') conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during 'summer' conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO and T daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges.
Resumo:
The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a "typical" concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals.
An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region.
The results indicate that large amounts of PBDEs presently reside in all model compartments – air, soil, water, and sediment – with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities.
Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat less than measured values. In sediment, model results are at the high end of measured values.
Resumo:
Kenyan tannery and associated environmental samples were selected for ecotoxicological assessment. A tool-kit of techniques was developed, including whole-cell biosensor and chemical assays. A luminescence based bacterial biosensor (Escherichia coli HB101 pUCD607) (via a multi-copy plasmid) was used for toxicity assessment. Samples were manipulated prior to biosensor interrogation to identify the nature of the toxic contaminants. Untreated samples (before any manipulations) showed a strong toxic effect at the discharge point in comparison to other sampling points. Sparging was used to identify toxicity associated with volatile organics. The toxicity of contaminants, removed by treatment with activated charcoal was identified for all the sampling points except for those upstream of effluent discharges. Filtration identified toxicity associated with suspended solids. Changes in availability of toxic contaminants due to pH adjustment of most samples from the tannery effluent treatment pits were also associated with the extreme pH values (4.0 and 8.0). The approach used has highlighted the complexicity of toxic pollutants in effluent from the tanning industry and the dissection of toxicity points to possible remediation strategies for effluents from the tanning industry.
Resumo:
Much interest now focuses on the use of the contingent valuation method (CVM) to assess non-use value of environmental goods. The paper reviews recent literature and highlights particular problems of information provision and respondent knowledge, comprehension and cognition. These must be dealt with by economists in designing CVM surveys for eliciting non-use values. Cognitive questionnaire design methods are presented which invoke concepts from psychology and tools from cognitive survey design (focus groups and verbal reports) to reduce a complex environmnetal good into a meaningful commodity that can be valued by respondents in a contingent market. This process is illustrated with examples from the authors' own research valuing alternative afforestation programmes. -Authors
Resumo:
The environmental quality of land is often assessed by the calculation of threshold values which aim to differentiate between concentrations of elements based on whether the soils are in residential or industrial sites. In Europe, for example, soil guideline values exist for agricultural and grazing land. A threshold is often set to differentiate between concentrations of the element that naturally occur in the soil and concentrations that result from diffuse anthropogenic sources. Regional geochemistry and, in particular, single component geochemical maps are increasingly being used to determine these baseline environmental assessments. The key question raised in this paper is whether the geochemical map can provide an accurate interpretation on its own. Implicit is the thought that single component geochemical maps represent absolute abundances. However,because of the compositional (closed) nature of the data univariate geochemical maps cannot be compared directly with one another.. As a result, any interpretation based on them is vulnerable to spurious correlation problems. What does this mean for soil geochemistry mapping, baseline quality documentation, soil resource assessment or risk evaluation? Despite the limitation of relative abundances, individual raw geochemical maps are deemed fundamental to several applications of geochemical maps including environmental assessments. However, element toxicity is related to its bioavailable concentration, which is lowered if its source is mixed with another source. Elements interact, for example under reducing conditions with iron oxides, its solid state is lost and arsenic becomes soluble and mobile. Both of these matters may be more adequately dealt with if a single component map is not interpreted in isolation to determine baseline and threshold assessments. A range of alternative compositionally compliant representations based on log-ratio and log-contrast approaches are explored to supplement the classical single component maps for environmental assessment. Case study examples are shown based on the Tellus soil geochemical dataset, covering Northern Ireland and the results of in vitro oral bioaccessibility testing carried out on a sub-set of archived Tellus Survey shallow soils following the Unified BARGE (Bioaccessibility Research Group of Europe).
Resumo:
Background: Theoretically, each species’ ecological niche is phylogenetically-determined and expressed spatially as the species’ range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition.
Methods: We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N) were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N.
Results: There was an increase in isotopic variation at high shore levels, where E. peruviana’s preferred resource, tide-deposited particulate organic matter (POM), appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore.
Discussion: Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition, this may be a direct factor in setting their range limit.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.