47 resultados para Electron state density
Resumo:
We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.
Resumo:
The first complete multi-state CDW close coupling calculations which use a fully normalized basis set are performed. The results obtained at impact energies in the region of 10 keV for total and n = 2 capture cross sections are in reasonably good accord with experiment despite the fact that only the ground states of both species and the n = 2 states of the projectile are incorporated into the model. The theory has significant advantages over other atomic and molecular expansions which may require extensive bases to obtain similar accuracy.
Resumo:
Cross sections for the multi-ionization of He and Li are presented for impact energies in the range of 50 to 1000 keV/amu. These are calculated using the eikonal initial state approximation to represent the input and exit channels of the active electrons. The ionization process is simulated in a variety of ways, most notably an attempt to account for the effects of electron correlation via the inclusion of a continuum density of states (CDS) term. Inadequacies, of the CDW formulation at small impact parameters, and of the models themselves, are discussed and conclusions are drawn on what repercussions this has for the cross sections calculated.
Resumo:
The technique of double translational energy spectroscopy.(DTES), recently successfully developed in this laboratory for use with targets of atomic hydrogen, has been used to study one-electron capture by ground-state N2+(2s22p)(2)p(0) ions in collisions with hydrogen atoms at energies within the range 0.8-6.0 keV. Cross sections for the formation of the main excited product channels have been determined. The measurements allow a re-evaluation of our previous TES measurements carried out with N2+ primary beams containing an admixture of metastable N2+(2s2p2)(4)p ions. The main findings of these earlier measurements are confirmed and the DTES measurements now remove any ambiguity in interpretation of the experimental data. While recent theoretical studies correctly predict the two main N+ D-3(0) and P-3(0) product channels, the quantitative agreement with experiment is only partially satisfactory.
State selective electron capture by state prepared beams of multiply charged ions in atomic hydrogen
Resumo:
The two-electron QED contributions to the ground-state binding energy of Kr34+ ions have been determined in two independent experiments performed with electron beam ion traps (EBIT) in Heidelberg (HD) and Tokyo (BT, Belfast-Tokyo collaboration). X rays arising from radiative recombination (RR) of free electrons to the ground state of initially bare Kr36+ and hydrogenlike Kr35+ ions were observed as a function of the interacting electron energy. The K edge absorption by thin Eu and W foils provided fixed photon energy references used to measure the difference in binding energy Delta E-2e between the H- and He-like Kr ions (Kr35+ and Kr34+, respectively). The two values agree well, yielding a final result of Delta E-2e=641.8 +/- 1.7 eV, confirming recent results of rigorous QED calculations. This accuracy is just of the order required to access screened radiative QED contributions.
Resumo:
The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.
Resumo:
The electrochemical reduction of oxygen in two different room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide ([N-6222][N(Tf)(2)]) was investigated by cyclic voltammetry at a gold microdisk electrode. Chronoamperometric measurements were made to determine the diffusion coefficient, D, and concentration, c, of the electroactive oxygen dissolved in the ionic liquid by fitting experimental transients to the Aoki model. [Aoki, K.; et al. J. Electroanal. Chem. 1981, 122, 19]. A theory and simulation designed for cyclic voltammetry at microdisk electrodes was then employed to determine the diffusion coefficient of the electrogenerated superoxide species, O-2(.-), as well as compute theoretical voltammograms to confirm the values of D and c for neutral oxygen obtained from the transients. As expected, the diffusion coefficient of the superoxide species was found to be smaller than that of the oxygen in both ionic liquids. The diffusion coefficients of O-2 and O-2(.-) in [N-6222][N(Tf)(2)], however, differ by more than a factor of 30 (D-O2 = 1.48 x 10(-10) m(2) s(-1), DO2.- = 4.66 x 10(-12) m(2) s(-1)), whereas they fall within the same order of magnitude in [EMIM][N(Tf)(2)] (D-O2 = 7.3 x 10(-10) m(2) s(-1), DO2.- = 2.7 x 10(-10) m(2) s(-1)). This difference in [N-6222][N(Tf)(2)] causes pronounced asymmetry in the concentration distributions of oxygen and superoxide, resulting in significant differences in the heights of the forward and back peaks in the cyclic voltammograms for the reduction of oxygen. This observation is most likely a result of the higher viscosity of [N-6222][N(Tf)(2)] in comparison to [EMIM][N(Tf)(2)], due to the structural differences in cationic component.
Resumo:
A new type of direct current, high-density, and low electron temperature reflex plasma source, obtained as a hybrid between a modified hollow-cathode discharge and a Penning ionization gauge discharge is presented. The plasma source was tested in argon, nitrogen, and oxygen over a range pressure of 1.0-10(-3) mbar, discharge currents 20-200 mA, and magnetic field 0-120 Gauss. Both external parameters, such as breakdown potential and the discharge voltage-current characteristic, and its internal parameters, like the electron energy distribution function, electron and ion densities, and electron temperature, were measured. Due to the enhanced hollow-cathode effect by the magnetic trapping of electrons, the density of the bulk plasma is as high as 10(18) m(-3), and the electron temperature is as low as a few tenths of electron volts. The plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of an electric field. (C) 2004 American Institute of Physics.
Resumo:
The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.
Resumo:
We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.
Resumo:
We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).
Resumo:
Thomson scattering from laser-induced plasma in atmospheric helium was used to obtain temporally and spatially resolved electron temperature and density profiles. Electron density measurements at 5 s after breakdown are compared with those derived from the separation of the allowed and forbidden components of the 447.1 nm He I line. Plasma is created using 9 ns, 140 mJ pulses from Nd:YAG laser at 1064 nm. Electron densities of ~5 × 10 cm are in good agreement with Thomson scattering measurements, benchmarking this emission line as a useful diagnostic for high density plasmas. © 2011 American Institute of Physics.
Resumo:
We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16) W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution.