23 resultados para Electrode materials
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
Electrochemical capacitors, also known as supercapacitors, are becoming increasingly important components in energy storage, although their widespread use has not been attained due to a high cost/ performance ratio. Fundamental research is contributing to lowered costs through the engineering of new materials. Currently the most viable materials used in electrochemical capacitors are biomassderived and polymer-derived activated carbons, although other carbon materials are useful research tools. Metal oxides could result in a step change for electrochemical capacitor technology and is an exciting area of research. The selection of an appropriate electrolyte and electrode structure is fundamental in determining device performance. Although there are still many uncertainties in understanding the underlying mechanisms involved in electrochemical capacitors, genuine progress continues to be made. It is argued that a large, collaborative international research programme is necessary to fully develop the potential of electrochemical capacitors.
Probing Bias-Dependent Electrochemical Gas-Solid Reactions in (LaxSr1-x)CoO3-delta Cathode Materials
Resumo:
Spatial variability of bias-dependent electrochemical processes on a (La0.5Sr0.5)(2)CoO4 +/- modified (LaxSr1-x)CoO3- surface is studied using first-order reversal curve method in electrochemical strain microscopy (ESM). The oxygen reduction/evolution reaction (ORR/OER) is activated at voltages as low as 3-4 V with respect to bottom electrode. The degree of bias-induced transformation as quantified by ESM hysteresis loop area increases with applied bias. The variability of electrochemical activity is explored using correlation analysis and the ORR/OER is shown to be activated in grains at relatively low biases, but the final reaction rate is relatively small. At the same time, at grain boundaries, the onset of reaction process corresponds to larger voltages, but limiting reactivity is much higher. The reaction mechanism in ESM of mixed electronic-ionic conductor is further analyzed. These studies both establish the framework for probing bias-dependent electrochemical processes in solids and demonstrate rich spectrum of electrochemical transformations underpinning catalytic activity in cobaltites.
Resumo:
We developed a facile two-step hydrothermal procedure to prepare hybrid materials of LiV3O8 nanorods on graphene sheets. The special structure endows them with the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in remarkable electrochemical performance when they were used as cathodes in rechargeable lithium batteries. © 2013 The Royal Society of Chemistry.
Resumo:
A novel method to fabricate chemically linked conducting polymer–biopolymer composites that are intrinsically flexible and conducting for functional electrode applications is presented. Polypyrrole was synthesised in situ during the cellulose regeneration process using the 1-butyl-3-methylimidazolium chloride ionic liquid as a solvent medium. The obtained polypyrrole–cellulose composite was chemically blended and showed flexible polymer properties while retaining the electronic properties of a conducting polymer. Addition of an ionic liquid such as trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, enhanced the flexibility of the composite. The functional application of these materials in the electrochemically controlled release of a model drug has been demonstrated. This strategy opens up a new design for a wide spectrum of materials for smart electronic device applications wherein the functionality of doping and de-doping of conducting polymers is retained and their processability issue is addressed by exploiting an ionic liquid route.