84 resultados para Electric machinery.
Resumo:
Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.
Resumo:
Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillinresistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 µg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.
Resumo:
Silver nanorods have been grown by electrodeposition into thin film porous alumina templates (AAO). Optical transmission measurements using p-polarized incident white light shows clear plasmon resonance extinction peaks. We successfully model the dependence on angle in incidence of extinction peak height and position using a multiple-multipoles (MMP) approach with the different spectral features being clearly associated with the effective electric field distribution and coupling between individual nanorods.
Resumo:
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Resumo:
Current high temperature superconducting (HTS) wires exhibit high current densities enabling their use in electrical rotating machinery. The possibility of designing high power density superconducting motors operating at reasonable temperatures allows for new applications in mobile systems in which size and weight represent key design parameters. Thus, all-electric aircrafts represent a promising application for HTS motors. The design of such a complex system as an aircraft consists of a multi-variable optimization that requires computer models and advanced design procedures. This paper presents a specific sizing model of superconducting propulsion motors to be used in aircraft design. The model also takes into account the cooling system. The requirements for this application are presented in terms of power and dynamics as well as a load profile corresponding to a typical mission. We discuss the design implications of using a superconducting motor on an aircraft as well as the integration of the electrical propulsion in the aircraft, and the scaling laws derived from physics-based modeling of HTS motors.
Resumo:
Renewable energy is generally accepted as an important component of future electricity grids. In late 2008, the Government of the Republic of Ireland set a target of 10% of all vehicles in its transport fleet be powered by electricity by 2020. This paper examines the potential contributions Electric Vehicles (EVs) can make to facilitate increased electricity generation from variable renewable sources such as wind generation in the Republic of Ireland. It also presents an overview of the technical and economic issues associated with this target.
Resumo:
The international introduction of electric vehicles (EVs) will see a change in private passenger car usage, operation and management. There are many stakeholders, but currently it appears that the automotive industry is focused on EV manufacture, governments and policy makers have highlighted the potential environmental and job creation opportunities while the electricity sector is preparing for an additional electrical load on the grid system. If the deployment of EVs is to be successful the introduction of international EV standards, universal charging hardware infrastructure, associated universal peripherals and user-friendly software on public and private property is necessary. The focus of this paper is to establish the state-of-the-art in EV charging infrastructure, which includes a review of existing and proposed international standards, best practice and guidelines under consideration or recommendation.