19 resultados para EPA SWMM
Resumo:
The aim of the present study was to investigate the responses of phase I and II biotransformation enzymes and levels of PAHs in the Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) collected from three sites at different distance from an oil refinery. Phase I enzyme activities as NAD(P)H-cyt c red, NADH ferry red, B(a)PMO and phase II as UDPGT. GST were measured in digestive gland while 16 PAHs (US-EPA) in whole soft tissue. An added value to the data obtained in the present study rely on the RDA analysis which showed close correlations between PAHs levels and phase I enzyme activities in mussels collected in front of the refinery. And again a significant spatial correlation between B(a)P levels and NADPH-cyt c red activities was observed using linear models. No differences among sites for B(a) PMO and phase II GST activities were observed, while the application of UDPGT as biomarkers requires further investigation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study identifies and analyzes the effect that aging time and temperature have on the CO light-off activity of three-way catalyst samples, aged in a static air (oxidizing) atmosphere. The bench aging time (BAT) equation proposed by the Environmental Protection Agency (EPA), which describes aging as dependent upon time at temperature, was used to calculate a range of oven aging times and temperatures based on a RAT-A engine bench aging cycle.
CO light-off tests carried out on cores aged between 800 and 900 °C have shown that it is the aging temperature that has the greatest effect on catalyst deterioration for static aging testing, with aging time having little effect. These results were in contradiction to the BAT equation, an industry norm for the aging of catalysts. This demonstrates that static aging, whilst showing how temperature affects aging, gives little or no time effects. The results have shown that static aging is not representative of actual aging on a vehicle.
Progressive aging conducted at a temperature of 1000 °C was shown to cause a decrease in catalyst activity as the aging time increased. However, even in these extreme conditions, static aging gave a slower rate of aging with time when compared to engine aging as defined by the BAT equation. Overall, static aging in air has been shown to produce a greater increase in aging due to temperature than predicted by the BAT equation, but less aging due to aging time.
Resumo:
In this study LC n-3 PUFA-specific effects on the degree of monocyte differentiation and macrophage foam cell formation were investigated by treating PMA-induced immature and mature macrophage models with LC n-3/n-6 PUFA during and post-differentiation. During immature macrophage differentiation LC n-3 PUFA alone decreased TNFα mRNA levels. EPA, and the n-6 PUFAs, linoleic acid and arachidonic acid, decreased CD36 mRNA levels, and EPA also downregulated CD49d cell-surface expression. Both LC n-3 PUFA reduced LDLr mRNA levels in immature macrophages, while DHA alone reduced levels in mature macrophages. Post-differentiation, n-3 and -6 PUFA reduced basal, but not oxidised LDL dependent cholesterol levels in immature macrophages. LC n-3 PUFA-specific reductions in LDLr and LOX-1 mRNA expression were also observed.
This study found LC n-3 PUFA specific, anti-atherogenic effects were more significant in immature macrophages. LC n-3 PUFA effects may be modulated by the extent of monocyte to macrophage differentiation.