48 resultados para ENERGY FUNCTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen ions (H+, H-2(+) and H-3(+)) are produced in a magnetically confined inductively coupled radio frequency plasma. Ions are accelerated in the plasma boundary sheath potential, of several hundred volts, in front of a biased metal electrode immersed in the plasma. Backscattered hyperthermal hydrogen atoms are investigated by optical emission spectroscopy and an energy-resolved mass spectrometer. Ionisation of fast neutrals through electron stripping of atoms in the plasma allows energy analysis of the resulting ions. Thereby, the energy distribution function of the hyperthermal atoms can be deduced. The energy spectra can be explained as a superposition of individual spectra of the various ion species. The measured spectra also shows contributions of negative ions created at the electrode surface. In addition to experimental measurements, simulations of the neutral flux of backscattered atoms are carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-electron QED contributions to the ground-state binding energy of Kr34+ ions have been determined in two independent experiments performed with electron beam ion traps (EBIT) in Heidelberg (HD) and Tokyo (BT, Belfast-Tokyo collaboration). X rays arising from radiative recombination (RR) of free electrons to the ground state of initially bare Kr36+ and hydrogenlike Kr35+ ions were observed as a function of the interacting electron energy. The K edge absorption by thin Eu and W foils provided fixed photon energy references used to measure the difference in binding energy Delta E-2e between the H- and He-like Kr ions (Kr35+ and Kr34+, respectively). The two values agree well, yielding a final result of Delta E-2e=641.8 +/- 1.7 eV, confirming recent results of rigorous QED calculations. This accuracy is just of the order required to access screened radiative QED contributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The damage induced in supercoiled plasmid DNA molecules by low energy (< 1 keV u-1) singly and doubly charged carbon ions has been investigated as a function of ion exposure. The production of short linear fragments through multiple double strand breakage is indicated and exponential exposure responses for each of the topoisomers are presented. The damage produced by C2+ is apparent at much lower ion exposures that with C+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The states of a boson pair in a one-dimensional double-well potential are investigated. Properties of the ground and lowest excited states of this system are studied, including the two-particle wave function, momentum pair distribution, and entanglement. The effects of varying both the barrier height and the effective interaction strength are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim
The aim of this study was to use a prospective longitudinal study to describe age-related trends in energy efficiency during gait, activity, and participation in ambulatory children with cerebral palsy (CP).

Method
Gross Motor Function Measure (GMFM), Paediatric Evaluation of Disability Inventory (PEDI), and Lifestyle Assessment Questionnaire-Cerebral Palsy (LAQ-CP) scores, and energy efficiency (oxygen cost) during gait were assessed in representative sample of 184 children (112 male; 72 female; mean age 10y 9mo; range 4–16y) with CP. Ninety-four children had unilateral spastic CP, 84 bilateral spastic CP, and six had other forms of CP. Fifty-seven were classified as Gross Motor Function Classification System (GMFCS) level I, 91 as level II, 22 as level III, and 14 as level IV). Assessments were carried out on two occasions (visit 1 and visit 2) separated by an interval of 2 years and 7 months. A total of 157 participants returned for reassessment.

Results
Significant improvements in mean raw scores for GMFM, PEDI, and LAQ-CP were recorded; however, mean raw oxygen cost deteriorated over time. Age-related trends revealed gait to be most inefficient at the age of 12 years, but GMFM scores continued to improve until the age of 13 years, and two PEDI subscales to age 14 years, before deteriorating (p<0.05). Baseline score was consistently the single greatest predictor of visit 2 score. Substantial agreement in GMFCS ratings over time was achieved (?lw=0.74–0.76).

Interpretation
These findings have implications in terms of optimal provision and delivery of services for young people with CP to maximize physical capabilities and maintain functional skills into adulthood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose as energy-constrained sandpile model with random neighbors. The critical behavior of the model is in the same universality class as the mean-field self-organized criticality sandpile. The critical energy E-c depends on the number of neighbors n of each site, but the various exponents do not. For n = 6, we got that E-c = 0.4545; and a self-similar structure of the energy distribution function with five major peaks is also observed. This is a natural result of system dynamics and the way the system is disturbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15-380 mJ at intensities of 10(16)-10(18) W/cm(2). The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The second derivative of a Langmuir probe characteristic is used to establish the electron energy distribution function (EEDF) in both a tandem and hybrid multicusp H- ion source. Moveable probes are used to establish the spatial variation of the EEDF. The negative ion density is measured by laser induced photo-detachment. In the case of the hybrid source the EEDF consists of a cold Maxwellian in the central region of the source; the electron temperature increases with increasing discharge current (rising from 0.3 eV at 1 A to 1.2 eV at 50 A when the pressure is 0.4 Pa). A hot-electron tail exists in the EEDF of the driver region adjacent to each filament which is shown to consist of a distinct group of primary electrons at low pressure (0.08 Pa) but becomes degraded mainly through inelastic collisions at higher pressures (0.27 Pa). The tandem source, on the other hand, has a single driver region which extends throughout the central region. The primary electron confinement times are much longer so that even at the lowest pressure considered (0.07 Pa) the primaries are degraded. In both cases the measured EEDF at specific locations and values of discharge operating parameters are used to establish the rate coefficients for the processes of importance in H- production and destruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable development comprises of three dimensions. The three dimensions are the environment, the social and the economic. There have been many indicators used to measure the three dimensions of sustainability. For example air pollution, consumption of natural resources, quality of open space, noise, equity and opportunities and economic benefits from transport and land use. Urban areas constitute the most crucial factor in the sustainability. Urban systems affect and are affected by natural systems beyond their physical boundaries and in general the interdependence between the urban system and the regional and global environment is not reflected in urban decision making. The use of energy in the urban system constitutes the major element in the construction and function of urban areas. Energy impacts across the boundaries of the three dimensions of sustainability. The objective of this research is to apply energy-use-indicators to the urban system as a measure of sustainability. This methodology is applied to a case study in the United Kingdom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an age of depleting oil reserves and increasing energy demand, humanity faces a stalemate between environmentalism and politics, where crude oil is traded at record highs yet the spotlight on being ‘green’ and sustainable is stronger than ever. A key theme on today’s political agenda is energy independence from foreign nations, and the United Kingdom is bracing itself for nuclear renaissance which is hoped will feed the rapacious centralised system that the UK is structured upon. But what if this centralised system was dissembled, and in its place stood dozens of cities which grow and monopolise from their own energy? Rather than one dominant network, would a series of autonomous city-based energy systems not offer a mutually profitable alternative? Bio-Port is a utopian vision of a ‘Free Energy City’ set in Liverpool, where the old dockyards, redundant space, and the Mersey Estuary have been transformed into bio-productive algae farms. Bio-Port Free Energy City is a utopian ideal, where energy is superfluous; in fact so abundant that meters are obsolete. The city functions as an energy generator and thrives from its own product with minimal impact upon the planet it inhabits. Algaculture is the fundamental energy source, where a matrix of algae reactors swamp the abandoned dockyards; which themselves have been further expanded and reclaimed from the River Mersey. Each year, the algae farm is capable of producing over 200 million gallons of bio-fuel, which in-turn can produce enough electricity to power almost 2 million homes. The metabolism of Free-Energy City is circular and holistic, where the waste products of one process are simply the inputs of a new one. Livestock farming – once traditionally a high-carbon countryside exercise has become urbanised. Cattle are located alongside the algae matrix, and waste gases emitted by farmyards and livestock are largely sequestered by algal blooms or anaerobically converted to natural gas. Bio-Port Free Energy City mitigates the imbalances between ecology and urbanity, and exemplifies an environment where nature and the human machine can function productively and in harmony with one another. According to James Lovelock, our population has grown in number to the point where our presence is perceptibly disabling the planet, but in order to reverse the effects of our humanist flaws, it is vital that new eco-urban utopias are realised.