21 resultados para Drug abuse counseling
Resumo:
Semicarbazide (SEM) was considered to be a characteristic protein-bound side-chain metabolite of the banned veterinary drug nitrofurazone and used as a marker of nitrofurazone abuse. It was recently discovered that SEM can arise in food from sources other than nitrofurazone. This uncertainty over the source of SEM may be overcome if alternative markers specific to tissue-bound nitrofurazone residues can be determined. The structure of nitrofurazone metabolites in vivo and particular proteins to which they are bound are not known. These proteins with altered structure due to the presence of the drug metabolites can be considered as potential alternative biomarkers of nitrofurazone abuse. The proteins implicated in the in vivo binding of nitrofurazone were separated and identified. A crude mixture of proteins extracted from the liver of a rat treated with the drug was separated using a series of different techniques such as preparative isoelectric focusing and size exclusion HPLC. Multiple fractions were assayed by LC-MS/MS to detect the presence of SEM. The proteins containing SEM residues were identified by peptide mass mapping using trypsin digestion and MALDI-TOF. The first protein identified as containing high concentration of SEM was albumin. It was also shown that low molecular weight species within a protein mixture whose main constituent was glutathione S-transferase contained a high concentration of SEM. The chemical composition of these components is under investigation. Preliminary data suggest the SEM forms part of a nitrofurazone metabolite conjugated to glutathione. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Laboratory testing in N. Ireland for the illegal growth promoting agent, clenbuterol (CBL), is centralized at the Veterinary Sciences Division, Belfast. During the past 6 years a variety of testing schemes have evolved to determine the level of abuse of this drug in the local meat industry.
Resumo:
Intact nitrofurazone is present in whole eyes of chickens fed varying levels of this banned antibiotic and may therefore be used as an alternative to the controversial marker residue, semicarbazide, to monitor for abuse of this drug in primary production.
Resumo:
Growth-promoting agents are continually misused for increasing animal growth and fraudulent gain in the meat industry, yet detection rates from conventional targeted testing for drug residues do not reflect this. This is because testing currently relies on direct detection of drugs or related metabolites and administrators of such compounds can take adaptive measures to avoid detection through the use of endogenous or unknown drugs, and low dose or combined mixtures. New detection methods are needed which focus on the screening of biological responses of an animal to such growth-promoting agents as it has been demonstrated that genomic, proteomic and metabolomics profiles are altered by xenobiotic intake. Therefore, an untargeted proteomics approach using comparative two-dimensional gel electrophoresis (2DE) was carried out to identify putative proteins altered in plasma after treatment with oestradiol, dexamethasone or prednisolone. Twenty-four male cattle were randomly assigned to four groups (n = 6) for experimental treatment over 40 days, namely a control group of non-treated cattle, and three groups administered 17β-oestradiol-3-benzoate (0.01 mg/kg, intramuscular), dexamethasone sodium phosphate (0.7 mg/day, per os) or prednisolone acetate (15 mg/day, per os), respectively. Plasma collected from each animal at day 25 post study initiation was subjected to proteomic analysis by 2DE for comparison of protein expression between treated and untreated animals. Analysis of acquired gel images revealed 22 plasma proteins which differed in expression by more than 50 % (p < 0.05) in treated animals compared to untreated animals. Proteins of interest underwent identification by LC–MS/MS analysis and were found to have associated roles in transport, blood coagulation, immune response and metabolism pathways. In this way, seven proteins are highlighted as novel biomarker candidates including transthyretin which is shown to be significantly increased in all treatment groups compared to control animals and potentially may find use as global markers of suspect anabolic practice.
Resumo:
The aim of the study was to investigate the potential of a metabolomics platform to distinguish between pigs treated with ronidazole, dimetridazole and metronidazole and non-medicated animals (controls), at two withdrawal periods (day 0 and 5). Livers from each animal were biochemically profiled using UHPLC–QTof-MS in ESI+ mode of acquisition. Several Orthogonal Partial Least Squares-Discriminant Analysis models were generated from the acquired mass spectrometry data. The models classified the two groups control and treated animals. A total of 42 ions of interest explained the variation in ESI+. It was possible to find the identity of 3 of the ions and to positively classify 4 of the ionic features, which can be used as potential biomarkers of illicit 5-nitroimidazole abuse. Further evidence of the toxic mechanisms of 5-nitroimidazole drugs has been revealed, which may be of substantial importance as metronidazole is widely used in human medicine.