34 resultados para Dripping irrigation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reconnaissance of 23 paddy fields, from three Bangladesh districts, encompassing a total of 230 soil and rice plant samples was conducted to identify the extent to which trace element characteristics in soils and irrigation waters are reflected by the harvested rice crop. Field sites were located on two soil physiographic units with distinctly different As soil baseline and groundwater concentrations. For arsenic (As), both straw and grain trends closely fitted patterns observed for the soils and water. Grain concentration characteristics for selenium (Se), zinc (Zn), and nickel (Ni), however, were markedly different. Regressions of shoot and grain As against grain Se, Zn, and Ni were highly significant (P <0.001), exhibiting a pronounced decline in grain trace-nutrient quality with increasing As content. To validate this further, a pot experiment cultivar screening trial, involving commonly cultivated high yielding variety (HYV) rice grown alongside two U.S. rice varieties characterized as being As tolerant and susceptible, was conducted on an As-amended uniform soil. Findings from the trial confirmed that As perturbed grain metal(loid) balances, resulting in severe yield reductions in addition to constraining the levels of Se, Zn, and Ni in the grain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 +/- 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 +/- 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated - baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P <0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation water only leads to a gradual increase in grain arsenic concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of arsenic (As) contaminated groundwater for irrigation of crops has resulted in elevated concentrations of arsenic in agricultural soils in Bangladesh, West Bengal (India), and elsewhere. Paddy rice (Oryza sativa L.) is the main agricultural crop grown in the arsenic-affected areas of Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown those soils. A greenhouse study was conducted to examine the effects of arsenic-contaminated irrigation water on the growth of rice and uptake and speciation of arsenic. Treatments of the greenhouse experiment consisted of two phosphate doses and seven different arsenate concentrations ranging from 0 to 8 mg of As L(-1) applied regularly throughout the 170-day post-transplantation growing period until plants were ready for harvesting. Increasing the concentration of arsenate in irrigation water significantly decreased plant height, grain yield, the number of filled grains, grain weight, and root biomass, while the arsenic concentrations in root, straw, and rice husk increased significantly. Concentrations of arsenic in rice grain did not exceed the food hygiene concentration limit (1.0 mg of As kg(-1) dry weight). The concentrations of arsenic in rice straw (up to 91.8 mg kg(-1) for the highest As treatment) were of the same order of magnitude as root arsenic concentrations (up to 107.5 mg kg(-1)), suggesting that arsenic can be readily translocated to the shoot. While not covered by food hygiene regulations, rice straw is used as cattle feed in many countries including Bangladesh. The high arsenic concentrations may have the potential for adverse health effects on the cattle and an increase of arsenic exposure in humans via the plant-animal-human pathway. Arsenic concentrations in rice plant parts except husk were not affected by application of phosphate. As the concentration of arsenic in the rice grain was low, arsenic speciation was performed only on rice straw to predict the risk associated with feeding contaminated straw to the cattle. Speciation of arsenic in tissues (using HPLC-ICP-MS) revealed that the predominant species present in straw was arsenate followed by arsenite and dimethylarsinic acid (DMAA). As DMAA is only present at low concentrations, it is unlikely this will greatly alter the toxicity of arsenic present in rice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To estimate the incidence of severe chemical corneal injuries in the UK and describe presenting clinical features and initial management.

METHODS: All patients with severe chemical corneal injury in the UK from December 2005 to November 2006 inclusive were prospectively identified using the British Ophthalmological Surveillance Unit. Reporting ophthalmologists provided information regarding presentation and follow-up.

RESULTS: Twelve cases were identified, giving a minimum estimated incidence in the UK of severe chemical corneal injury of 0.02 per 100,000. 66.7% of injuries were in males of working age, 50% occurred at work, and alkali was causative in 66.7%. Only one patient was wearing eye protection at the time of injury, 75% received immediate irrigation. Six patients required one or more surgical procedures, most commonly amniotic membrane graft. At 6 months' follow-up, the best-corrected visual acuity was 6/12 or better in five patients, and worse than 6/60 in two.

CONCLUSION: The incidence of severe chemical corneal injury in the UK is low. The cases that occur can require extended hospital treatment, with substantial ocular morbidity and visual sequelae. Current enforcement of eye protection in the workplace in the UK has probably contributed to a reduced incidence of severe ocular burns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Immediate breast reconstruction after mastectomy has increased over the past decade following the unequivocal demonstration of its oncological safety and the availability of reliable methods of reconstruction. Broadly, it is undertaken in the treatment of breast cancer, after prophylactic mastectomy in high-risk patients, and in the management of treatment failure after breast-conserving surgery and radiotherapy. Immediate breast reconstruction can be achieved reliably with a variety of autogenous tissue techniques or prosthetic devices. Careful discussion and evaluation remain vital in choosing the correct technique for the individual patient.

Methods: This review is based primarily on an English language Medline search with secondary references obtained from key articles.

Results and conclusion: Immediate breast reconstruction is a safe and acceptable procedure after mastectomy for cancer; there is no evidence that it has untoward oncological consequences. In the appropriate patient it can be achieved effectively with either prosthetic or autogenous tissue reconstruction. Patient selection is important in order to optimize results, minimize complications and improve quality of life, while simultaneously treating the malignancy. Close cooperation and collaboration between the oncological breast and reconstructive achieve these objectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic contamination of rice plants by arsenic-polluted irrigation groundwater could result in high arsenic concentrations in cooked rice. The main objective of the study was to estimate the total and inorganic arsenic intakes in a rural population of West Bengal, India, through both drinking water and cooked rice. Simulated cooking of rice with different levels of arsenic species in the cooking water was carried out. The presence of arsenic in the cooking water was provided by four arsenic species (arsenite, arsenate, methylarsonate or dimethylarsinate) and at three total arsenic concentrations (50, 250 or 500 mu g l(-1)). The results show that the arsenic concentration in cooked rice is always higher than that in raw rice and range from 227 to 1642 mu g kg(-1). The cooking process did not change the arsenic speciation in rice. Cooked rice contributed a mean of 41% to the daily intake of inorganic arsenic. The daily inorganic arsenic intakes for water plus rice were 229, 1024 and 2000 mu g day(-1) for initial arsenic concentrations in the cooking water of 50, 250 and 500 g arsenic l(-1), respectively, compared with the tolerable daily intake which is 150 mu g day(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has previously been reported that rice grown in regions of Bangladesh with low-arsenic (As) concentrations in irrigation water can have relatively high concentrations of As within their grains. This study aims to determine how widespread this issue is, and determine the seasonal variation in grain As in these regions. Levels of As were measured in shallow tube well (STW) water, soils, and rice grains collected during the Boro (dry) and Aman (wet) seasons from six Upazilas (sub-districts) of Bangladesh where As levels in groundwater were known to be low. In all the Upazilas, the As concentrations in STW water were <50 mu g L-1. The As levels in soil samples collected from the Upazilas ranged between 0.2-4.0 mgkg(-1) in the sam-ples collected during the Boro season, and 0.4-5.7 mg kg(-1) in the samples collected in the Aman season. Levels of As in both Boro and Aman rice grain varied widely: in Boro 0.02-0.45 mg kg(-1), and in Aman 0.01-0.29 mg kg(-1). Additionally, a household survey of dietary habits was also conducted in one Upazila by estimating As ingestion by 15 head female members. On average, the women consumed 3.1 L of water, 1.1 kg of cooked rice, and 42 g dry weight of curry per day. The total As ingestion rates ranged from 31.1-129.3 mu g day(-1) (mean 63.5 mu g kg(-1)). These findings indicate that the major route of As ingestion in low groundwater As areas of Bangladesh is rice, followed by curry and then water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The levels of As and various other trace elements found in the irrigated agricultural soil (Tsoil) of southern Libya were compared with non-irrigated soil (Csoil) from the same sampling campaign collected between April and May 2008. The soil samples represented agronomic practice in the southern Libyan regions of Maknwessa (MAK), Aril (ARL) and Taswaa (TAS), and were analyzed by Inductively coupled plasma mass spectrometry (ICP-MS) for Co, Ni, Cu, Se, Mo, Zn, As, Pb, Cd and P. Concentrations of P and As in TAS and MAK were found to be higher in Tsoil compared to Csoil, while the opposite was true for ARL. In general, As concentrations in these areas were 2-3 times lower than the global average. In ARL, the average P concentrations of the Csoil samples were significantly higher than those of Tsoil samples: this site is composed mainly of pasture for animal production, where phosphate fertilizers are used regularly. Distance from the source of irrigation was found to be of an important influence on the heavy metal concentration of the soil, with greater concentrations found closer to the irrigation source. It can be concluded from the results that irrigation water contains elevated levels of As, which finds its way into the soil profile and can lead to accumulation of As in the soil over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several agricultural fields show high contents of arsenic because of irrigation with arsenic- contaminated groundwater. Vegetables accumulate arse- nic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic en- demic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L−1) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumula- tion were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spec- trometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, suchas ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to im- prove food safety and also food security by increasing farmer’s revenue.