62 resultados para Distributed parameter systems
Resumo:
This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.
Resumo:
A framework supporting fast prototyping as well as tuning of distributed applications is presented. The approach is based on the adoption of a formal model that is used to describe the orchestration of distributed applications. The formal model (Orc by Misra and Cook) can be used to support semi-formal reasoning about the applications at hand. The paper describes how the framework can be used to derive and evaluate alternative orchestrations of a well know parallel/distributed computation pattern; and shows how the same formal model can be used to support generation of prototypes of distributed applications skeletons directly from the application description.
Resumo:
The reverse engineering of a skeleton based programming environment and redesign to distribute management activities of the system and thereby remove a potential single point of failure is considered. The Ore notation is used to facilitate abstraction of the design and analysis of its properties. It is argued that Ore is particularly suited to this role as this type of management is essentially an orchestration activity. The Ore specification of the original version of the system is modified via a series of semi-formally justified derivation steps to obtain a specification of the decentralized management version which is then used as a basis for its implementation. Analysis of the two specifications allows qualitative prediction of the expected performance of the derived version with respect to the original, and this prediction is borne out in practice.
Resumo:
Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.
Resumo:
A simple approach is proposed for disturbance attenuation in multivariable linear systems via dynamical output compensators based on complete parametric eigenstructure assignment. The basic idea is to minimise the H-2 norm of the disturbance-output transfer function using the design freedom provided by eigenstructure assignment. For robustness, the closed-loop system is restricted to be nondefective. Besides the design parameters, the closed-loop eigenvalues are also optimised within desired regions on the left-half complex plane to ensure both closed-loop stability and dynamical performance. With the proposed approach, additional closed-loop specifications can be easily achieved. As a demonstration, robust pole assignment, in the sense that the closed-loop eigenvalues are as insensitive as possible to open-loop system parameter perturbations, is treated. Application of the proposed approach to robust control of a magnetic bearing with a pair of opposing electromagnets and a rigid rotor is discussed.
Resumo:
This paper presents a systematic measurement campaign of diversity reception techniques for use in multiple-antenna wearable systems operating at 868 MHz. The experiments were performed using six time-synchronized bodyworn receivers and considered mobile off-body communications in an anechoic chamber, open office area and a hallway. The cross-correlation coefficient between the signal fading measured by bodyworn receivers was dependent upon the local environment and typically below 0.7. All received signal envelopes were combined in post-processing to study the potential benefits of implementing receiver diversity based upon selection combination, equal-gain and maximal-ratio combining. It is shown that, in an open office area, the 5.7 dB diversity gain obtained using a dual-branch bodyworn maximal-ratio diversity system may be further improved to 11.1 dB if a six-branch system was used. First-and second-order theoretical equations for diversity reception techniques operating in Nakagami fading conditions were used to model the postdetection combined envelopes. Maximum likelihood estimates of the Nakagami-parameter suggest that the fading conditions encountered in this study were generally less severe than Rayleigh. The paper also describes an algorithm that may be used to simulate the measured output of an M-branch diversity combiner operating in independent and identically-distributed Nakagami fading environments.
Resumo:
Developing a desirable framework for handling inconsistencies in software requirements specifications is a challenging problem. It has been widely recognized that the relative priority of requirements can help developers to make some necessary trade-off decisions for resolving con- flicts. However, for most distributed development such as viewpoints-based approaches, different stakeholders may assign different levels of priority to the same shared requirements statement from their own perspectives. The disagreement in the local levels of priority assigned to the same shared requirements statement often puts developers into a dilemma during the inconsistency handling process. The main contribution of this paper is to present a prioritized merging-based framework for handling inconsistency in distributed software requirements specifications. Given a set of distributed inconsistent requirements collections with the local prioritization, we first construct a requirements specification with a prioritization from an overall perspective. We provide two approaches to constructing a requirements specification with the global prioritization, including a merging-based construction and a priority vector-based construction. Following this, we derive proposals for handling inconsistencies from the globally prioritized requirements specification in terms of prioritized merging. Moreover, from the overall perspective, these proposals may be viewed as the most appropriate to modifying the given inconsistent requirements specification in the sense of the ordering relation over all the consistent subsets of the requirements specification. Finally, we consider applying negotiation-based techniques to viewpoints so as to identify an acceptable common proposal from these proposals.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
Dust ion acoustic solitons in an unmagnetized dusty plasma comprising cold dust particles, adiabatic fluid ions, and electrons satisfying a kappa distribution are investigated using both small amplitude and arbitrary amplitude techniques. Their existence domain is discussed in the parameter space of Mach number M and electron density fraction f over a wide range of values of kappa. For all kappa > 3/2, including the Maxwellian distribution, negative dust supports solitons of both polarities over a range in f. In that region of parameter space solitary structures of finite amplitude can be obtained even at the lowest Mach number, the acoustic speed, for all kappa. These cannot be found from small amplitude theories. This surprising behavior is investigated, and it is shown that f(c), the value of f at which the KdV coefficient A vanishes, plays a critical role. In the presence of positive dust, only positive potential solitons are found. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3400229]