104 resultados para Dispersion Coefficients
Resumo:
A comparative study of models used to predict contaminant dispersion in a partially stratified room is presented. The experiments were carried out in a ventilated test room, with an initially evenly dispersed pollutant. Air was extracted from the outlet in the ceiling of the room at 1 and 3 air changes per hour. A small temperature difference between the top and bottom of the room causes very low air velocities, and higher concentrations, in the lower half of the room. Grid-independent CFD calculations were compared with predictions from a zonal model and from CFD using a very coarse grid. All the calculations show broadly similar contaminant concentration decay rates for the three locations monitored in the experiments, with the zonal model performing surprisingly well. For the lower air change rate, the models predict a less well mixed contaminant distribution than the experimental measurements suggest. With run times of less than a few minutes, the zonal model is around two orders of magnitude faster than coarse-grid CFD and could therefore be used more easily in parametric studies and sensitivity analyses. For a more detailed picture of internal dispersion, a CFD study using coarse and standard grids may be more appropriate.
Resumo:
In gas discharges at elevated pressure, radiation-less collisional de-excitation (quenching) has a strong influence on the population of excited states. The knowledge of quenching coefficients is therefore important for plasma diagnostics and simulations. A novel time-resolved optical emission spectroscopic (OES) technique allows the measurement of quenching coefficients for emission lines of various species, particularly of noble gases, with molecular hydrogen as collision partner. The technique exploits the short electron impact excitation during the field reversal phase within the sheath region of a hydrogen capacitively coupled RF discharge at 13.56 MHz. Quenching coefficients can be determined subsequent to this excitation from the effective lifetime of the fluorescence decay at various hydrogen pressures. The measured quenching coefficients agree very well with results obtained by means of laser excitation. The time-resolved OES technique based on electron impact excitation is not limited - in contrast to laser techniques - by optical selection rules and the energy gap between the ground state and the observed excited level.
Resumo:
An efficient approach to the simulation of the double potential step chronoamperometry at a microdisk electrode based on an exponentially expanding time grid and conformal mapping of the space is presented. The dimensionless second potential step flux data are included as a function of the first potential step duration and the ratio of the diffusion coefficients of the reacting species allowing instant analysis of the experimental double potential step chronoamperograms without a need for simulation. The values of the diffusion coefficients are determined for several test systems and found to be in good agreement with existing literature data. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical reduction of oxygen in two different room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide ([N-6222][N(Tf)(2)]) was investigated by cyclic voltammetry at a gold microdisk electrode. Chronoamperometric measurements were made to determine the diffusion coefficient, D, and concentration, c, of the electroactive oxygen dissolved in the ionic liquid by fitting experimental transients to the Aoki model. [Aoki, K.; et al. J. Electroanal. Chem. 1981, 122, 19]. A theory and simulation designed for cyclic voltammetry at microdisk electrodes was then employed to determine the diffusion coefficient of the electrogenerated superoxide species, O-2(.-), as well as compute theoretical voltammograms to confirm the values of D and c for neutral oxygen obtained from the transients. As expected, the diffusion coefficient of the superoxide species was found to be smaller than that of the oxygen in both ionic liquids. The diffusion coefficients of O-2 and O-2(.-) in [N-6222][N(Tf)(2)], however, differ by more than a factor of 30 (D-O2 = 1.48 x 10(-10) m(2) s(-1), DO2.- = 4.66 x 10(-12) m(2) s(-1)), whereas they fall within the same order of magnitude in [EMIM][N(Tf)(2)] (D-O2 = 7.3 x 10(-10) m(2) s(-1), DO2.- = 2.7 x 10(-10) m(2) s(-1)). This difference in [N-6222][N(Tf)(2)] causes pronounced asymmetry in the concentration distributions of oxygen and superoxide, resulting in significant differences in the heights of the forward and back peaks in the cyclic voltammograms for the reduction of oxygen. This observation is most likely a result of the higher viscosity of [N-6222][N(Tf)(2)] in comparison to [EMIM][N(Tf)(2)], due to the structural differences in cationic component.
Resumo:
Measurements of collisional de-excitation (quenching) coefficients required for the interpretation of emission and fluorescence spectroscopic measurements are reported. Particular attention is turned on argon transitions which are of interest for actinometric determinations of atomic ground state populations and on fluorescence lines originating from excited atoms and noble gases in connection with two-photon excitation (TALIF) of atomic radicals. A novel method is described which allows to infer quenching coefficients for collisions with molecular hydrogen of noble gas states in the energy range up to 24 eV. The excitation is performed in these experiments by collisions of energetic electrons in the sheath of an RF excited hydrogen plasma during the field reversal phase which lasts about 10 ns. We describe in addition a calibration method - including quenching effects - for the determination by TALIF of absolute atomic radical densities of hydrogen, nitrogen and oxygen using two-photon resonances in noble gases close by the resonances of the species mentioned. The paper closes with first ideas on a novel technique to bypass quenching effects in TALIF by introducing an additional, controllable loss by photoionization that will allow quenching-free determination of absolute atomic densities with prevalent nanosecond laser systems in situations where collisional de-excitation dominates over spontaneous emission.
Resumo:
An efficient modelling technique is proposed for the analysis of a fractal-element electromagnetic band-gap array. The modelling is based on a method of moments modal analysis in conjunction with an interpolation scheme, which significantly accelerates the computations. The plane-wave and the surface-wave responses of the structure have been studied by means of transmission coefficients and dispersion diagrams. The multiband properties and the compactness of the proposed structure are presented. The technique is general and can be applied to arbitrary-shaped element geometries.
Resumo:
The active site in supported gold catalysts for the carbonylation of methanol has been identified as dimers/trimers of gold which are formed from large gold particles >10 nm in diameter. Methyl iodide was found to be critical for this dispersion process and to maintain the catalyst in the active form. This study also shows that it may be possible to redisperse gold catalysts, in general, after reaction.
Resumo:
A mathematical model for calculating the nonisothermal moisture transfer in building materials is presented in the article. The coupled heat and moisture transfer problem was modeled. Vapor content and temperature were chosen as principal driving potentials. The coupled equations were solved by an analytical method, which consists of applying the Laplace transform technique and the Transfer Function Method. A new experimental methodology for determining the temperature gradient coefficient for building materials was also proposed. Both the moisture diffusion coefficient and the temperature gradient coefficient for building material were experimentally evaluated. Using the measured moisture transport coefficients, the temperature and vapor content distribution inside building materials were predicted by the new model. The results were compared with experimental data. A good agreement was obtained.