68 resultados para Discontinuous dynamic systems
Resumo:
Situation calculus has been applied widely in arti?cial intelligence to model and reason about actions and changes in dynamic systems. Since actions carried out by agents will cause constant changes of the agents’ beliefs, how to manage
these changes is a very important issue. Shapiro et al. [22] is one of the studies that considered this issue. However, in this framework, the problem of noisy sensing, which often presents in real-world applications, is not considered. As a
consequence, noisy sensing actions in this framework will lead to an agent facing inconsistent situation and subsequently the agent cannot proceed further. In this paper, we investigate how noisy sensing actions can be handled in iterated
belief change within the situation calculus formalism. We extend the framework proposed in [22] with the capability of managing noisy sensings. We demonstrate that an agent can still detect the actual situation when the ratio of noisy sensing actions vs. accurate sensing actions is limited. We prove that our framework subsumes the iterated belief change strategy in [22] when all sensing actions are accurate. Furthermore, we prove that our framework can adequately handle belief introspection, mistaken beliefs, belief revision and belief update even with noisy sensing, as done in [22] with accurate sensing actions only.
Resumo:
A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and generalization performance of the original forward LAR algorithm. This is achieved by introducing a replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant model terms selected by forward LAR with more significant ones, leading to an improved model in terms of the model compactness and performance. A numerical example to construct four types of NARX models, namely polynomials, radial basis function (RBF) networks, neuro fuzzy and wavelet networks, is presented to illustrate the effectiveness of the proposed technique in comparison with some popular methods.
Resumo:
The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.
Resumo:
This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.
Resumo:
Dynamic mechanical analysis (DMA) is an analytical technique in which an oscillating stress is applied to a sample and the resultant strain measured as functions of both oscillatory frequency and temperature. From this, a comprehensive knowledge of the relationships between the various viscoelastic parameters, e.g. storage and loss moduli, mechanical damping parameter (tan delta), dynamic viscosity, and temperature may be obtained. An introduction to the theory of DMA and pharmaceutical and biomedical examples of the use of this technique are presented in this concise review. In particular, examples are described in which DMA has been employed to quantify the storage and loss moduli of polymers, polymer damping properties, glass transition temperature(s), rate and extent of curing of polymer systems, polymer-polymer compatibility and identification of sol-gel transitions. Furthermore, future applications of the technique for the optimisation of the formulation of pharmaceutical and biomedical systems are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.
Resumo:
In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.
Resumo:
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.
Resumo:
Using a speed-matching task, we measured the speed tuning of the dynamic motion aftereVect (MAE). The results of our Wrst experiment, in which we co-varied dot speed in the adaptation and test stimuli, revealed a speed tuning function. We sought to tease apart what contribution, if any, the test stimulus makes towards the observed speed tuning. This was examined by independently manipulating dot speed in the adaptation and test stimuli, and measuring the eVect this had on the perceived speed of the dynamic MAE. The results revealed that the speed tuning of the dynamic MAE is determined, not by the speed of the adaptation stimulus, but by the local motion characteristics of the dynamic test stimulus. The role of the test stimulus in determining the perceived speed of the dynamic MAE was conWrmed by showing that, if one uses a test stimulus containing two sources of local speed information, observers report seeing a transparent MAE; this is despite the fact that adaptation is induced using a single-speed stimulus. Thus while the adaptation stimulus necessarily determines perceived direction of the dynamic MAE, its perceived speed is determined by the test stimulus. This dissociation of speed and direction supports the notion that the processing of these two visual attributes may be partially independent.
Resumo:
This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.
Resumo:
Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.