21 resultados para Dinoflagellates, calcareous, wall thickness
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composites containing 4 wt% MWCNTs were prepared by melt mixing followed by compression moulding into sheet. Compression moulded sheets were heated to just below the melting temperature and biaxially stretched at ratios (SRs) of 2, 2.5 and 3.0. The effect of stretching on the thermal and mechanical properties of the sheet was studied by differential scanning calorimetry (DSC) and tensile testing. DSC results show that the crystallinity of all the stretched samples increases by approximately 13% due to strain induced crystallization. The melting temperature of the biaxially stretched samples increases only slightly while crystallization temperature is not affected. Tensile test results indicate that at a SR of 2.5 the elastic modulus of the stretched composites increases by 17.6% relative to the virgin HDPE, but the breaking strength decreases by 33%. While the elastic modulus and breaking strength of the HDPE/MWCNT samples continue to increase as SR increases they drop off after a SR of 2.5 for the virgin HDPE. This is probably due to the constraining influence of the nanotubes preventing the relaxation of polymer chains caused by adiabatic heating at high SRs. The addition of MWCNTs results in significant strain hardening during deformation. While this will lead to increased energy requirement in forming it will also result in a more stable process and the ability to produce deep draw containers with more uniform wall thickness
Resumo:
Rotational moulding is a method to produce hollow plastic articles. Heating is normally carried out by placing the mould into a hot air oven where the plastic material in the mould is heated. The most common cooling media are water and forced air. Due to the inefficient nature of conventional hot air ovens most of the energy supplied by the oven does not go to heat the plastic and as a consequence the procedure has very long cycle times. Direct oil heating is an effective alternative in order to achieve better energy efficiency and cycle times. This research work has combined this technology with new innovative design of mould, applying the advantages of electroforming and rapid prototyping. Complex cavity geometries are manufactured by electroforming from a rapid prototyping mandrel. The approach involves conformal heating and cooling channels , where the oil flows into a parallel channel to the electroformed cavity (nickel or copper). Because of this the mould enables high temperature uniformity with direct heating and cooling of the electroformed shell, Uniform heating and cooling is important not only for good quality parts but also for good uniform wall thickness distribution in the rotationally moulded part. The experimental work with the manufactured prototype mould has enabled analysis of the thermal uniformity in the cavity, under different temperatures. Copyright © 2008 by ASME.
Resumo:
This paper presents the results from investigations into the differences in the rotational moulding and mechanical properties between pigmented polyethylene powder and micropellets. Both high shear and low shear pigment blending methods were examined, as were a range of pigment addition levels. This was followed by a series of mechanical and analytical tests on the rotomoulded articles to determine properties. Whilst micropellets tended to produce a different surface porosity than powder, few bubbles were evident within the wall thickness for both high shear and low shear blending. For high shear blending, with pigment addition levels up to 0.05%, similar impact properties were noticed for both powder and micropellets. Low shear blending resulted in more inconsistent impact values. There were also more visual inconsistencies in articles produced from powder.
Resumo:
A new method for catalyst deposition on the inner walls of capillary microreactors is proposed which allows exact control of the coating thickness, pore size of the support, metal particle size, and metal loading. The wall-coated microreactors have been tested in a selective hydrogenation reaction. Activity and selectivity reach values close to those obtained with a homogeneous Pd catalyst. The catalyst activity was stable for a period of 1000 h time-on-stream.
Resumo:
UNLABELLED: Varicose veins may be due to weakness of the vein wall as a result of structural problems. There are conflicting findings in the literature about these problems especially concerning collagen, elastin and smooth muscle cells content. The aim of this study was to look at the structural abnormalities of varicose veins (with and without valvular incompetence).
MATERIALS AND METHODS: We studied 70 specimens of long saphenous veins from 35 patients (24 with varicose and 11 with normal veins). Two specimens were taken from each vein approximately 3-4 cm from the saphenofemoral junction. Vein specimens were processed for histological and electron microscopic studies. Both qualitative and quantitative analyses were performed to assess the degree of wall changes. Using the image analyzer, contents of collagen, elastin and smooth muscle cells, in addition to intimal and medial thickness, were measured.
RESULTS: Light microscopy revealed significant increase in intimal and medial thickness and collagen content of media and significant decrease in elastin content in varicose veins compared with normal veins. There was no statistical significant difference between varicose veins with and without saphenofemoral valve incompetence. Electron microscopy showed marked degenerative changes in intima and media of varicose veins.
CONCLUSION: The findings in our study supported the theory of primary weakness of the vein wall as a cause of varicosity. This weakness is due to intimal changes, disturbance in the connective tissue components and smooth muscle cells.
Resumo:
For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.