43 resultados para Diffusion of Internet
Resumo:
The importance of accurately measuring gas diffusivity in porous materials has led to a number of methods being developed. In this study the Temporal Analysis of Products (TAP) reactor and Flux Response Technology (FRT) have been used to examine the diffusivity in the washcoat supported on cordierite monoliths. Herein, the molecular diffusion of propane within four monoliths with differently prepared alumina/CeZrOx washcoats was investigated as a function of temperature. Moment-based analysis of the observed TAP responses led to the calculation of the apparent intermediate gas constant, Kp, that characterises adsorption into the mesoporous network and apparent time delay, tapp, that characterises residence time in the mesoporous network. Additionally, FRT has been successfully adapted as an extensive in situ perturbation technique in measuring intraphase diffusion coefficients in the washcoats of the same four monolith samples. The diffusion coefficients obtained by moment-based analysis of TAP responses are larger than the coefficients determined by zero length column (ZLC) analysis of flux response profiles with measured values of the same monolith samples between 20 and 100 °C ranging from 2–5×10-9 m2 s-1 to 4–8×10-10 m2 s-1, respectively. The TAP and FRT data, therefore, provide a range of the lower and upper limits of diffusivity, respectively. The reported activation energies and diffusivities clearly correlate with the difference in the washcoat structure of different monolith samples.
Resumo:
This thesis establishes appropriate internet technology as a matter of sustainability for the community arts field. It begins with a contextual review that historicises community art in relation to technological, cultural, and political change. It goes on to identify key challenges for the field resulting from the emerging socio-cultural significance of the internet and digital media technologies. A conceptual review of the literature positions these issues in relation to Internet Studies, integrating key concepts from Software Studies and the computational turn with approaches from the fields of ICT for Development (ICT4D), Critical Design, and Critical Making. Grounded in these intersecting literatures the thesis offers a new pragmatic ethics of appropriate internet technology: one involving an alternative philosophical platform from which suitable internet-based technologies can be designed and assembled by practitioners. I interrogate these ideas through an in-depth investigation of CuriousWorks, an Australian community arts organisation, focusing on their current internet practices. The thesis then reflects on some experimental interventions I designed as part of the study for the purpose of provoking shifts in the field of community arts. The research findings form the foundation of a series of recommendations offered to practitioners and policy makers that may guide their critical and creative uses of internet technologies in the future.
Resumo:
Sputtered silicon is investigated as a bonding layer for transfer of pre-processed silicon layers to various insulating substrates. Although the material appears suitable for low temperature processing, previous work has shown that gas trapped in the pores of the sputtered material is released at temperatures above 350 degrees C and further increases of temperature lead to destruction of any bonded interface. Pre-annealing at 1000 degrees C before bonding drives out gas and/or seals the surface, but for device applications where processing temperatures must be kept below about 300 degrees C, this technique cannot be used. In the current work, we have investigated the effect of excimer laser-annealing to heat the sputtered silicon surface to high temperature whilst minimising heating of the underlying substrate. Temperature profile simulations are presented and the results of RBS, TEM and AFM used to characterise the annealed layers. The results verify that gases are present in the sub-surface layers and suggest that while sealing of the surface is important for suppression of the out-diffusion of gases, immediate surface gas removal may also play a role. The laser-annealing technique appears to be an effective method of treating sputtered silicon, yielding a low roughness surface suitable for wafer bonding, thermal splitting and layer transfer.
Resumo:
The electrochemical oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) has been studied by cyclic voltammetry and potential step chronoamperometry at 303 K in five ionic liquids, namely [C(2)mim] [NTf2], [C(4)mim] [NTf2] [C(4)mpyrr] [NTf2] [C(4)mim] [BF4], and [C(4)mim] [PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, and [PF6](-) = hexafluorophosphate). Diffusion coefficients, D, of 4.87, 3.32, 2.05, 1.74, and 1.34 x 10(-11) m(2) s(-1) and heterogeneous electron-transfer rate constants, k(0), of 0.0109, 0.0103, 0.0079, 0.0066, and 0.0059 cm s(-1) were calculated for TMPD in [C(2)mim] [NTf2], [C(4)mim] [NTf2], [C(4)mpyrr] [NTf2], [C(4)mim] [BF4], and [C(4)mim] [PF6], respectively, at 303 K. The oxidation of TMPD in [C4mim][PF6] was also carried out at increasing temperatures from 303 to 343 K, with an activation energy for diffusion of 32.3 kJ mol(-1). k(0) was found to increase systematically with increasing temperature, and an activation energy of 31.4 kJ mol(-1) was calculated. The study was extended to six other p-phenylenediamines with alkyl/phenyl group substitutions. D and k(0) values were calculated for these compounds in [C(2)mim] [NTf2], and it was found that k(0) showed no obvious relationship with the hydrodynamic radius, r.
Resumo:
Voltammetric studies of PCl3 and POCl3 have not been reported in the literature to date, probably due to the instability of these molecules in conventional aprotic solvents giving unstable and irreproducible results. From a previous study [Amigues et al. Chem. Commun. 2005, 1-4], it was found that ionic liquids have the ability to offer a uniquely stable solution phase environment for the study of these phosphorus compounds. Consequently, the electrochemistry of PCl3 and POCl3 has been studied by cyclic voltammetry on a gold microelectrode in the ionic liquid [C(4)mpyrr][N(Tf)(2)] (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide). For both compounds, reduction and oxidation waves were observed and a tentative assignment of the waves is given. For PCl3, the reduction was thought to proceed via the following mechanism: PCl3 + e(-) h reversible arrow PCl3-, PCl3- reversible arrow Cl- + (PCl2)-Cl-center dot, (and) Cl- + PCl3 h PCl4-. For POCl3, the suggested reduction mechanism was analogous to that of PCl3: POCl3 + e(-) reversible arrow POCl3-, POCl3- reversible arrow Cl- + (POCl2)-O-center dot, and Cl- + POCl3 h POCl4-. In both cases (PCl2)-Cl-center dot and (POCl2)-O-center dot are likely to engage in further reactions. Potential step microdisk chronoamperometry was carried out on the reductive waves of PCl3 and POCl3 to measure diffusion coefficients and number of electrons transferred. It was found that the diffusion of PCl3 was unusually slow (3.1 x 10(-12) m(2) s(-1)): approximately 1 order of magnitude less than that for POCl3 (2.2 x 10(-11) m(2) s(-1)). For both PCl3 and POCl3, a
Resumo:
The attainable steady-state limiting currents and time responses of membrane-covered and membrane-independent gas sensors incorporating different electrode and electrolyte materials have been compared. A new design comprising a membrane-free microelectrode modified with a thin layer of a room temperature ionic liquid is considered. While the use of ionic liquid as electrolyte eliminates the need for a membrane and added supporting electrolyte, the slower diffusion of analyte within the more viscous medium results in slower time responses. Such sensors do, however, have potential application in more extreme operating conditions, such as high temperature and pressure, where traditional solvents would volatise.
Resumo:
Density functional theory has been used to study the adsorption of hydroxyl at low and high coverages and also to investigate the nature of the intermediate in the H2O formation reaction on Pt(111). At low coverages [1/9 of a monolayer (ML) to 1/3 ML] OH binds preferentially at bridge and top sites with a chemisorption energy of similar to2.25 eV. At high coverages (1/2 ML to 1 ML) H bonding between adjacent hydroxyls causes: (i) an enhancement in OH chemisorption energy by about 15%; (ii) a strong preference for OH adsorption at top sites; and (iii) the formation of OH networks. The activation energy for the diffusion of isolated OH groups along close packed rows of Pt atoms is 0.1 eV. This low barrier coupled with H bonding between neighboring OH groups indicates that hydroxyls are susceptible to island formation at low coverages. Pure OH as well as coadsorbed OH and H can be ruled out as the observed low temperature intermediate in the water formation reaction. Instead we suggest that the intermediate consists of a mixed OH+H2O overlayer with a macroscopic surface coverage of 3/4 ML in a 2:1 ratio of OH and H2O. (C) 2001 American Institute of Physics.
Resumo:
Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. The adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon dioxide interacts strongly with the coal surface. The reduction in the value of the exotherms between the first and second runs for the Wyodak coal suggests that some CO2 is irreversibly bound to the structure even after heating to 200 °C DSC results also showed that adsorption of CO2 on the coal surface is an activated process and presumably at the temperature of the exotherms there is enough thermal energy to overcome the activation energy for adsorption. The adsorption process is instantly pursued by much slower diffusion of the gas molecules into the coal matrix (absorption). Structural rearrangement in coal by CO2 is examined by change in the glass transition temperature of coal after CO2 uptake at different pressures. The amount of gas dissolved in the coal increases with increasing CO2 pressure. TPD-MS showed that CO2 desorption from the Wyodak coal follows a first order kinetic model. Increase in the activation energy for desorption with pre-adsorbed CO2 pressure suggests that higher pressures facilitate the transport of CO2 molecules through the barriers therefore the amount of CO2 uptake by the coal is greater at higher pressures and more attempts are required to desorb CO2 molecules sorbed at elevated pressures. These conclusions were further confirmed by examining the Wyodak coal structure in high pressure CO 2 by SANS.
Resumo:
This paper uses data from the 2009 Kids’ Life and Times Survey, involving 3657 children aged 10 or 11 years old in Northern Ireland. The survey indicated high levels of use of Internet applications, including social-networking sites and online games. Using the KIDSCREEN-27 instrument, the data indicate that the use of social-networking sites and online games is related to poorer psychological well-being among girls, but not boys. Boys and girls who experience “cyberbullying” have poorer psychological well-being. This association between psychological well-being and some Internet applications merits more attention in future research and policy development.
Resumo:
The purpose of this paper is to examine IT adoption by Irish credit unions. Using probabilistic models, we explore one aspect of IT, that of internet banking technology, and assess the degree to which characteristics specific to the credit union and to its potential membership base influence adoption. Our
analysis suggests that asset size, organisational structure being a member of the Irish League of Credit Unions and the loan to asset ratio are all important credit union specific drivers of internet banking adoption. We also find that characteristics of the area from where the credit union captures its members are important. Factors such as the percentage of the population that is employed, the proportion of the population in the age bracket 35 to 44, the proportion of the population that have access to broadband and the level of familiarity with a local ATM facility are all identified as influencing the probability of adopting internet banking.
Resumo:
This paper uses data from the 2009 Kids’ Life and Times Survey, involving 3657 children aged 10 or 11 years old in Northern Ireland. The survey indicated high levels of use of Internet applications, including social-networking sites and online games. Using the KIDSCREEN-27 instrument, the data indicate that the use of social-networking sites and online games is related to poorer psychological well-being among girls, but not boys. Boys and girls who experience “cyberbullying” have poorer psychological well-being. This association between psychological well-being and some Internet applications merits more attention in future research and policy development.
Resumo:
We present two novel bioassays to be used in the examination of plant-parasitic nematode host-finding ability. The host-finding 'pipette-bulb assay' was constructed from modelled Pasteur pipette bulbs and connecting barrels using parafilm fastenings. This assay examines the direction of second-stage juvenile (J2) migration in response to a host seedling, through a moistened sand substrate, which underlies terminal upward-facing 'seedling bulbs', one containing a host seedling in potting compost, the other with only potting compost. An equal watering regime through both upward-facing seedling bulbs creates a directional concentration gradient of host diffusate chemotactic factors. Positive chemotactic stimuli cause the J2 to orientate and migrate towards the host plant. We present validation data collected from assays of the root-knot nematode, Meloidogyne incognita, and the potato cyst nematode, Globodera pallida, which indicate a highly significant positive attraction of J2 of both species to respective host plants. This represents a simple, quick and inexpensive method of assessing host-finding behaviour in the laboratory. We consider that the pipette-bulb assay improves on previous host-finding/chemo-attraction assays through creating a more biologically relevant environment for experimental J2; analysis is quick and easy, allowing the straightforward interpretation of results. In addition, we have developed an 'agar trough' sensory assay variant which we believe can be used rapidly to ratify nematode responses to chemical gustatory or olfactory cues. This was constructed from a water agar substrate such that two counting wells were connected by a raised central trough, all flooded with water. Two small water agar plugs were dehydrated briefly in an oven and then hydrated in either an attractant, repellent or water control; these plugs were then placed in the terminal counting wells and subsequently leached the attractant or repellent to form a concentration gradient along the central trough, which contained the initial J2 innoculum. Our data show that both M. incognita and G. pallida J2 are positively attracted to host diffusates. In addition, they displayed a strong repulsion in response to 1 M NaCl2. J2 of M. incognita displayed a mild aversion to a non-host oak root diffusate, whereas G. pallida J2 displayed a strong aversion to the same non-host diffusate; neither species responded to a compost leachate. We believe that the agar trough assay improves on previous methods by facilitating rapid diffusion of attractant or repellents. Both of the aforementioned assays were designed as tools to assess the impact of RNAi-based reverse genetics screens for gene targets involved in chemosensory orientation.
Resumo:
Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The preparation and characterisation of a novel, UV-activated, solvent-based, colourimetric indicator for oxygen is described, comprising a redox dye (methylene blue, MB), semiconductor photocatalyst (Pt-TiO2), and a sacrificial electron donor (SED = glycerol), all dispersed/dissolved in a polymer medium (sulfonated polystyrene. SPS). Upon exposure to UVA light, the Pt-TiO2/MB/glycerol/SPS oxygen indicator is readily photobleached as the MB is converted into its oxygen-sensitive, leuco form, LMB. In contrast to its non-platinised TiO2 counterpart (TiO2/MB/glycerol/SPS oxygen indicator), the recovery of the original colour is faster (ca. 1.5 days cf. 5 days at 21 degrees C). This is due to the catalytic action of the 0.38 wt% platinum loaded onto the semiconductor photocatalyst. TiO2, on the oxidation of the photogenerated LMB by ambient O-2. Furthermore, by increasing the level of platinum loading, recovery times can be decreased further; e.g. a Pt-TiO2/MB/glycerol/SPS oxygen indicator with platinum level of 1.52 wt% recovers fully within 12 h. A study of the kinetics of recovery as a function of film thickness revealed the recovery step is not controlled by the diffusion of O-2 through the film, but instead dependent upon the slow rate of oxidation of LMB to MB by O-2 in the low dielectric polymer encapsulation medium. Other work showed this recovery is only moderately dependant upon temperatures above -10 degrees C and very sensitive to relative humidity above 30% RH. Potential uses of this UV light activated indicator are discussed briefly. (C) 2011 Elsevier B.V. All rights reserved.