77 resultados para Diabetes typ 2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims/hypothesis: Glycation of insulin, resulting in impaired bioactivity, has been shown within pancreatic beta cells. We have used a novel and specific radioimmunoassay to detect glycated insulin in plasma of Type 2 diabetic subjects.

Methods: Blood samples were collected from 102 Type 2 diabetic patients in three main categories: those with good glycaemic control with a HbA1c less than 7%, moderate glycaemic control (HbA1c 7–9%) and poor glycaemic control (HBA1c greater than 9%). We used 75 age- and sex-matched non-diabetic subjects as controls. Samples were analysed for HbA1c, glucose and plasma concentrations of glycated insulin and insulin.

Results: Glycated insulin was readily detected in control and Type 2 diabetic subjects. The mean circulating concentration of glycated insulin in control subjects was 12.6±0.9 pmol/l (n=75). Glycated insulin in the good, moderate and poorly controlled diabetic groups was increased 2.4-fold (p<0.001, n=44), 2.2- fold (p<0.001, n=41) and 1.1-fold (n=17) corresponding to 29.8±5.4, 27.3±5.7 and 13.5±2.9 pmol/l, respectively.

Conclusion/interpretation: Glycated insulin circulates at noticeably increased concentrations in Type 2 diabetic subjects. [Diabetologia (2003) 46:475–478]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of diabetes mellitus on male reproductive health have not been clearly defined. A previous publication from this group reported significantly higher levels of nuclear DNA fragmentation and mitochondrial DNA deletions in spermatozoa from men with type 1 diabetes. This study compared semen profiles, sperm DNA fragmentation and levels of oxidative DNA modification in spermatozoa of diabetic and non-diabetic men. Semen samples from 12 non-diabetic, fertile men and 11 type 1 diabetics were obtained and subjected to conventional light microscopic semen analysis. Nuclear DNA fragmentation was assessed using an alkaline Comet assay and concentrations of 7,8-dihydro-8-oxo-2-deoxyguanosine (8-OHdG), an oxidative adduct of the purine guanosine, were assessed by high-performance liquid chromatography. Conventional semen profiles were similar in both groups, whilst spermatozoa from type 1 diabetics showed significantly higher levels of DNA fragmentation (44% versus 27%; P < 0.05) and concentrations of 8-OHdG (3.6 versus 2.0 molecules of 8-OHdG per 105 molecules of deoxyguanosine; P < 0.05). Furthermore, a positive correlation was observed between DNA fragmentation and concentrations of 8-OHdG per 105 molecules of deoxyguanosine (rs = 0.7, P < 0.05). The genomic damage evident in spermatozoa of type 1 diabetics may have important implications for their fertility and the outcome of pregnancies fathered by these individuals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we tested the biological activity of a novel acylated form of (Pro(3))glucose-dependent insulinotropic polypetide [(Pro3)GIP] prepared by conjugating palmitic acid to Lys(16) to enhance its efficacy in vivo by promoting binding to albumin and extending its biological actions. Like the parent molecule (Pro(3))GIP, (Pro(3))GIPLys(16)PAL was completely stable to the actions of DPP-IV and significantly (p <0.01 to p <0.001) inhibited GIP-stimulated cAMP production and cellular insulin secretion. Furthermore, acute administration of (Pro(3))GIPLys(16)PAL also significantly (p <0.05 to p <0.001) countered the glucose-lowering and insulin-releasing actions of GIP in ob/ob mice. Daily injection of (Pro(3))GIPLys(16)PAL (25 nmol/kg bw) in 14-18-week-old ob/ob mice over 14 days had no effect on body weight, food intake or non-fasting plasma glucose and insulin concentrations. (Pro(3))GIPLys(16)PAL treatment also failed to significantly alter the glycaemic response to an i.p. glucose load or test meal, but insulin concentrations were significantly reduced (1.5-fold; p <0.05) after the glucose load. Insulin sensitivity was enhanced (1.3-fold; p <0.05) and pancreatic insulin was significantly reduced (p <0.05) in the (Pro(3))GIPLys(16)PAL-treated mice. These data demonstrate that acylation of Lys(16) with palmitic acid in (Pro(3))GIP does not improve its biological effectiveness as a GIP receptor antagonist.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Type 2 diabetes is a disease fast approaching epidemic proportions throughout the world. From insulin sensitizers to PPARg agonists, the lecture will outline the successful medicinal chem. and biol. strategy underpinning the discovery and selection of Avandia, an innovative new medicine for this disease.